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Abstract

With the emergence of many application domains that require imprecise similarity based access to
information, techniques to support such a retrieval paradigm over database systems have emerged
as a critical area of research.

This thesis explores how to enhance database systems with content based search over arbitrary
abstract data types in a similarity based framework with query refinement. This scope opens a
number of challenges previously not faced by databases, among them:

• Extension of abstract data types to support arbitrary similarity functions and support for
query refinement. (Intra type similarity and feedback)

• Extension of the already developed query refinement models under the MARS system to a
general multi table relational model. (Inter Type similarity and feedback)

• Extension of query processing models from a set based model where tuples either satisfy or
not the query predicate to a result where the degree to which tuples satisfy a predicate is
represented by their similarity values. (Similarity predicates)

• Based on the similarity values, return only the best k matches. This implies a sorting on
the similarity values and ample optimizations are possible to use lazy evaluation and only
compute those answers that the user will see. (Ranked Retrieval)

• Optimization of query execution under the similarity conditions which requires access to
specialized indices. Optimized composite predicate merging is possible based on earlier work
on the MARS project to compute the similarity value for a predicate based on independent
streams rather than using the value directly. (Incremental top-k merging)

We are building a prototype system that implements the proposed functionality in an efficient way
and we evaluate the quality of the answers returned to the user.
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Chapter 1

Introduction

Advances in computer technology have redefined search as a fundamental and mission-critical tech-
nology. With the massive expansion of the Internet came a radical shift in the demographics of
users from tech- savvy, highly trained professionals who understood the technology and its lim-
itations, to naive users seeking “instant gratification”. In environments such as web searching,
e-business, and data analysis, users increasingly demand better access to information relevant to
solve their problems at hand, and can hardly be bothered with high cognitive demands. The search
engines that revolutionized the web popularized an easy to use query interface and the ranked
retrieval model based on presumed relevance of information that is now deeply entrenched in the
users psyche. Today, searching needs are more demanding than ever before.

Huge amounts of critical data remain beyond the reach of advanced search tools. This is not
just an availability problem, there is a fundamental disconnect between current technology and
the diverse nature of data. Search engines and relational database systems share the common
goal of retrieving data associatively: return information that satisfies some criteria regardless of its
location. Despite this common goal, search engines typically do not index information stored in
databases [145], while databases typically deal only with highly structured data [16]. This divergent
evolution has effectively resulted in incompatible tools that unwittingly conspire to hide valuable
information to the detriment of users and information providers.

Consider for example the task of finding products matching a user’s requirement. Imagine a
user Mary who is looking for a 1998 Honda Accord priced around $4000. If she uses a search engine
to pose this query, a better 1999 car for $3990 will remain hidden. The fundamental limitation
of search engines is that they focus on text and ignore the inherent structure and semantics of
the information. Thus, in general, they do not know the meaning of 1998: is it a year?, a house
number?, how does it compare to ’98? If instead Mary uses a database and she chooses a price
range of $3000 to $5000, then not only will a great car with a price of $5001 remain hidden, but
she will miss out on the ranked retrieval model she has come to expect. While databases have a
rich semantic structure, their fundamental limitations are that they focus on reporting all results
that match a query condition exactly. They force a user to convert a vague target value such as
“around $4000” into a precise range and therefore suffer from the “near-miss” problem that cause
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the $5001 car to be hidden from Mary. This situation illustrates a let down to Mary who expects
the best information to aid her decision-making. If Mary truly wants to make an informed decision,
she will need to repeatedly restate and submit her search criteria until she has covered her space
of interest.

It is no longer acceptable to present users with an adversarial search tool that demands them
to sacrifice some search capabilities they have come to expect. We need a search tool that will
function against rich unstructured/semi-structured data like web documents (e.g., text, HTML,
XML) and multimedia sources (e.g., images, video) in addition to traditional data, and that with
a single query, will deliver a single, combined answer and cooperate with the user until the desired
information is found.

The key enabling concept for a new-generation of search tools is an integrated similarity search
paradigm over structured, semi-structured and unstructured information. A system supporting
similarity search returns not only the items that exactly match the search criteria but also those that
closely (but partially) match them. The answers are returned sorted/ranked on their “goodness” of
match, better matches appearing before the worse ones, thereby increasing the chance of the user
finding the most relevant items quickly. In this paradigm, a user can start a query by submitting
a partial query with approximate search conditions or by simply selecting an item that closely
approximates her information need and requesting for similar items (query-by-example). Users can
pose queries via a simple point-and-click, form-based user interface without ever needing to write
SQL queries. Similarity searching also allows for meaningful retrieval in presence of inconsistencies
and incompleteness of information typically present in heterogeneous data.

A complicating factor when users are searching for information is that they generally do not have
a clear mental model of their exact information need at the beginning of the search. As a result,
in the context of their exploratory task, users typically have great difficulty posing a query that
produces the intended results. This is complicated since the relative importance among different
search conditions, and their specific interpretations are generally subjective. This causes them to
repeatedly modify their query in an information discovery cycle [80, 154] to probe the database
based on certain attributes/features in hopes of improving their results. Hence, user preferences
should be taken into account in order to compute results that are relevant to the particular user.
The inability to handle user preferences in the exact searching paradigm leads to poor- quality
search results.

A promising approach to cope with the difficulty in posing good initial queries, is to assist the
users in their information discovery cycle [80, 154] by embracing the concept of query refinement.
Instead of forcing users to manually modify the query, they can critique the results and and feed
back this information to the search tool which then reformulates the query and returns a new
set of results. This a form of relevance feedback has been successfully applied in the Information
Retrieval (IR) literature [137, 8] to textual collections and more recently in the multimedia retrieval
literature. We firmly believe this concept, together with similarity based ranking, has a much wider
applicability. Consider the following application scenarios:

2



Example 1.0.1 (Multimedia E-catalog search) Consider an online garment retailer. The store
has an online catalog with many attributes for each garment: the manufacturer, price, item descrip-
tion, and a picture of the garment. We can define similarity functions for each of these attributes,
for example, we can define how similar two given prices are, use a text vector model to represent the
items description, and can extract color, texture and shape features from the garment image [52].
Through a query by example (QBE) user interface, users select or enter a desired price, descrip-
tion, and/or select pictures of attractive garments as color an texture examples. Users then request
the “most similar” garments in terms of those attributes. The initial result ranking may not be sat-
isfactory, perhaps the user prefers some colors over others, and dislikes some manufacturers. She
expresses her preferences by marking the attributes appropriately, and then re-submits the query.
The system computes a new query and returns a new set of answers ranked closer to the users
desire.

Example 1.0.2 (Job Openings) Consider a job marketplace application that contains a listing
of job openings (description, salary offered, job location, etc.) and job applications (name, age,
resume, home location, etc.) and matches them to each other. The “resume” and “job description”
attributes can be are text descriptions, the job and home “location” is a two-dimensional (latitude,
longitude) position, and the desired and offered “salary” are numeric data- types. Applicants and
job listings are joined with a (similarity) condition to obtain the best matches. Unstated preferences
in the initial condition may produce an undesirable ranking. A user then points out to the system
a few desirable and/or undesirable examples where job location and the applicants home are close
(short commute times desired); the system then modifies the condition and produces a new ranking
that emphasizes geographic proximity.

We propose a paradigm shift that unites the strengths of Database and Information Retrieval
technologies: it brings the similarity searching/ranked retrieval paradigm of search engines into the
structured, type-rich access paradigm of databases, thereby providing the best of both worlds in a
single integrated system. Unlike search engines, we provide ranked retrieval not just on the text
data type, but also on any attribute irrespective of its type. Unlike relational databases, we provide
a ranked retrieval of objects based on the degree of match between the object and the query where
the degree of match is determined by the subjective interpretation of the user.

In this thesis we propose a new database technology that (1) supports flexible and customiz-
able similarity- based search over arbitrary, application-defined data-types and (2) provides built-in
support for query refinement that improves the quality of search results via user interaction with
the underlying data. Our approach bridges the gap between the traditional database and search
engine technologies; it merges the structured, type rich, database access with the similarity match-
ing/ranked retrieval paradigm of web search engines. The result is a tightly integrated system
that provides a flexible and powerful model of data access superior in scope and functionality to
that offered by either technology. Furthermore, our approach supports ”query refinement” whereby
users can personalize their search by providing feedback to the system.
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Our suggested approach impacts the design of a database system at all levels. While one way to
combine similarity retrieval and query refinement with a database system is to have an application
layer on top of a commercial database system, this approach treats the DBMS as little more than
storage and is unable to take advantage of advanced features. Instead, a native implementation is
free to rethink all aspects of the system and offer the best overall performance.

The query model changes from an exact match to a graded, similarity based matching model
that provides a finely grained distinction between answers that is suitable for ranking. This change
brings about a fundamental challenge: we now must worry about the quality of the results. Under
the exact-match retrieval model, correctness is easy to determine, a record either satisfies the query
condition or not. Under a ranked retrieval model, the more important issue is the placement of a
record, rather than whether it satisfies the query condition or not. After all, even the worst record
satisfies the query condition to some, albeit very low, extent. Once we are faced with considering
the quality of the results, considering improvements in the results is a natural extension. Query
refinement thus further impacts the database query model by extending the traditional single
query-response to a longer-lived session query model [83].

A ranked retrieval model further suggests dramatic changes in query processing: the ordering
constraint it imposes also creates an opportunity. The basic assumptions of the exact retrieval model
are that all results are equally desirable and must be returned, this results in an eager evaluation
approach. Since the number of potential results is anywhere from none to infinity, algorithms have
sacrificed economy in the name of speed. Under the ranked retrieval model however, users are
interested in the best answers to their query, not all answers. Therefore, the guiding principle
should be to find the best answers first while delaying worse results. This shifts the priority from
an eager query evaluation to a lazy evaluation strategy that produces on demand only those results
the user asks for. The resulting algorithms therefore stress minimizing the work needed to return
the next few answers at the expense of less efficiency in returning all answers. The hope is that the
overall work will reduce. The impact of query refinement on the query processing algorithms does
not conflict with lazy evaluation. The algorithms seek not only to avoid working on results the user
has not demanded, but they try to reuse the up front work they did in previous query iterations
to reduce the amount of work needed to answer a refined query.

In the remainder of this thesis we focus on each major aspect affected by our approach and
highlight it from a user, application developer, or system developer perspective. First we discuss
the basic background and related work from the Information Retrieval (IR) and database (DBMS)
domains in chapter 2. We then focus on integrating similarity retrieval in the DBMS. Chapter 3
discusses the changes to the relational model that impact the view of an application developer: how
queries are formed, how weights are provided, etc. Chapter 4 focuses on the quality of retrieval
and discusses how similarity queries are interpreted and the options a system developer must
consider. Chapter 5 then turns the system developers attention to algorithms that can implement
the similarity ranking model efficiently. After building the similarity retrieval foundation, we turn
to the problem of augmenting it with query refinement. Chapter 6 starts by presenting what the
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application developer can expect from a query refinement system. Chapter 7 then turns to strategies
the system developer can use to achieve query refinement while chapter 8 discusses how then can
be efficiently implemented. Chapter 9 then presents two case studies from a user perspective.
We implemented the garment search application from example X and a user car catalog in our
prototype. We discuss how an application developer would build such a system and the interface
offered to the user. Finally, we present our conclusions in chapter 10.
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Chapter 2

Background and Related Work

This section discusses work that influences the thesis project. Given the interdisciplinary nature of
this project, we explore work in several areas: (1) object relational database systems, (2) uncertainty
models in databases (3) information retrieval, (4) content based image retrieval, and (5) past efforts
to integrate database and information retrieval systems.

2.1 Object Relational Database Model

Databases have evolved in an environment that demands the management of precise data. After
several iterations of data models (hierarchical, network), the relational model is considered as one of
the most refined database paradigms.1 Its simplicity and power lies in a small set of concepts that
are easily learned, yet the expressive power of queries is immense. The query model is declarative
(with a procedural counterpart) [165] that allows for easy specification of the desired result without
need of specifying how to compute a result. Powerful query optimization and execution techniques
have been developed around this concept.

The relational model is based on a set of relations each one consisting of a set of tuples. A tuple
is comprised of a set of fields called attributes where simple atomic data items can be stored. In
effect, a relational schema is thus a set of tables with columns of various data types.

To perform queries under this model, two mathematically equivalent paradigms exist:

Relational Calculus is a purely declarative means of specifying the desired result.

Relational Algebra is based on a set of (unary and binary) operators that are applied to tables.
It is the procedural equivalent of the relational calculus.

The Structured Query Language (SQL) to support relational systems is largely based on relational
calculus, although it incorporates some aspects of relational algebra operators.

1The object oriented database model is more expressive than the relational model but has faced considerable
hurdles and is not widespread [22].
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Given a query expressed in a relational query language, a DBMS determines the answer as
a relation consisting of all those tuples that satisfy the predicates with the following relational
operators (using the relational algebra approach). The basic relational algebra is very simple:

• R(a1, a2, ..., an) is a relation over attributes a1 ∈ A1, a2 ∈ A2, ...an ∈ An where each Ai is the
domain of attribute ai. The basic operators are:

• The union operator which takes two relations R and S with the same number, name and
type of attributes and forms a relation T that has tuples that appear in either or both input
relations: T (a1, a2, ...an) = R(a1, a2, ..., an) ∪ S(a1, a2, ...an).

• Similar to the union operator, the difference operator uses two relations R and S over the
same attributes and produces a relation T with the tuples of the first relation (R) that are
not in the second relation (S): T (a1, a2, ...an) = R(a1, a2, ..., an)− S(a1, a2, ...an).

• The projection operator π reduces a relation by discarding certain attributes: R(ai, aj) =
πai,aj (R(a1, a2, ..., an)).

• The selection operator σcondition(R) which returns only those tuples in R that satisfy the
condition.

• The cross product operator R × S which creates a new relation T with all the attributes of
R and S and forms the cross product of all tuples in R and S: T (a1, a2, ...an, b1, b2, ...bm) =
R(a1, a2, ..., an)× S(b1, b2, ...bm)

• The join operator R ./condition S which is a very frequently used derived operator which
combines cross and select and is equivalent to: σcondition(R× S).

• Sorting is not properly a relational operator but we include it here as background for later
work on ranked lists. ρai,aj ,...(R) is the sort operator which sorts the tuples in a relation based
on the combined attributes ai, aj , ....

A subset of the relational algebra operators is complete if it can express any relational algebra
operation. The set of operations: {∪,−, π, σ,×} is complete for the basic relational model and
operators. Other derived operators exist which are combinations of several of the basic operators
such as the division. Yet other relational operators such as outer joins are not expressible by the
basic operators since they do not conform to basic relational assumptions and were created for
practical considerations. We will ignore these extra operators.

The basic relational model requires tables to be in the first normal form [36] where every
attribute is atomic. This poses serious limitations in supporting applications that deal with ob-
jects/data types with rich internal structure. The only recourse in the relational model is to map
the complex structure of the applications data types from and to the relational model every time
the object is read or written from or to the database. This results in extensive overhead making
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the relational approach unsuitable for advanced applications that require support for complex data
types.

The above limitations of the relational systems resulted in much research and commercial devel-
opment to extend the database functionality with rich user-defined data types in order to accommo-
date the needs of advanced applications. Research in extending the relational database technology
occurred along two parallel directions.

The first approach, referred to as the object-oriented database (OODBMS) approach attempted
to enrich object-oriented languages such as C++ and Smalltalk with the desirable features of
databases, such as concurrency control, recovery, and security. The OODBMS approach strived to
support the rich data types and semantics of object oriented languages with minimal changes to
add additional features such as persistence and transactions. Examples of systems that followed
this approach include research prototypes such as [23] and a number of commercial products [9, 92].

The Object-relational database (ORDBMS) systems, on the other hand, approached the prob-
lem of adding additional data types differently. ORDBMSs attempted to extend the existing re-
lational model with a full-blown type hierarchy of object-oriented languages. The key observation
was that simple data types had been used thus far as a consequence of the market and limited
computing resources and that the concept of the domain of an attribute need not be restricted to
simple data types. Given its foundation in the relational model, the ORDBMS approach can be
considered a less radical evolution compared to the OODBMS approach. The ORDBMS approach
produced such research prototypes as Postgres [155], and Starburst [67] and commercial products
such as Illustra [156]. The ORDBMS technology has now been embraced by all major vendors
including Informix [77], IBM DB2 [28], Oracle [112], Sybase [159], and UniSQL [84] among others.
The ORDBMS model has been incorporated in the SQL-3 standards.

While OODBMSs provide the full power of an object oriented language, they have lost ground
to ORDBMSs. Interested readers are referred to [156, 22] for a good insight from both a technical
as well as commercial perspective for this development. In the remainder of this work, we will
concentrate on the ORDBMS approach.

The object-relational model retains the concept of tables and columns in tables from the re-
lational model. Besides the basic types available, it augments the possible data types allowed
in columns to user-defined abstract data types (ADTs) and various collections of these and basic
types. The ADTs can conceivably be any type and typically consist of a number of data fields
and functions that operate on them. These functions, written by the user, are known as User
Defined Functions (UDFs) and are equivalent to methods in the object oriented context. In the
object-relational model, the fields of a table may correspond to basic DBMS data types, other
ADTs or even just some storage space whose interpretation is left to the user defined methods for
the type [77]. The following example illustrates how a user may create an ADT and include it in
a table definition:
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create type ImageInfoType ( date varchar(12) ,

location latitude real ,

location longitude real )

create table SurveyPhotos ( photo id integer primary key not null,

photographer varchar(50) not null,

photo location ImageInfoType not null,

photo blob not null)

The type ImageInfoType stores the location at which a photograph was taken together with the
date stored as a string. This can be useful for nature survey applications where a biologist may
desire to attach a geographic location and a date to a photograph. This type is then used to create
a table with an id for the photograph, the photographers name, the photograph itself (stored as a
binary large object or BLOB) and the location and date when it was taken.

The ORDBMSs extends the basic SQL to allow user defined functions (once it has been compiled
and registered with the DBMS) to be called directly from within SQL queries thereby providing
a natural mechanism to develop domain specific extensions to databases. The following example
shows a sample query that calls a user-defined function over the type declared above:

select photographer, convert to grayscale(photo)

from SurveyPhotos

where within distance(photo location,’1’, ’30.45, -127.0’)

This query returns the photographer and a gray scale version of the image stored in the table. The
photo location UDF is a predicate that returns true if the place where the image was shot is within
1 mile of the given location. Note that the UDF within distance is a predicate that returns true
for locations closer than one mile and false otherwise. This UDF ignores the date the picture was
taken, demonstrating how predicates are free to implement any semantically significant properties
of an application. Also note that the UDF to convert the image to gray-scale is applied to a re-
turned attribute. The last significant ability of ADTs is the support of inheritance of types and
as a consequence, polymorphism. This does introduce some problems in the storage of ADTs as it
complicates the existing storage mangers that assume all rows in a table share the same structure
which is no longer true. Several strategies were developed to cope with this problem [53] including
dynamic interpretation and a number of real tables one for each possible type that correspond to
a larger virtual table that forms the user defined table.

When a DBMS receives an SQL query, it first validates the query and then determines the
strategy to evaluate it. Such a strategy is called the query evaluation plan or simply plan and is
represented using an operator tree [57]. For a given query, there are usually several different plans
that will produce the same result; they only differ in the amount of resources needed to compute the
result. The resources include time and memory space in both disk and main memory. The query
optimizer first generates a variety of plans by choosing different orders among the operators in the
operator tree and choosing different algorithms to implement these operators and then selects the
best plan based on the available resources [57]. The two common strategies to compute optimized
plans are (1) rule-based optimization [67] and (2) cost-based optimization [140]. In the rule based

9



approach, a number of heuristics are encoded in the form of production rules that can be used
to transform the query tree into an equivalent tree that is more efficient to execute. An example
rule is pushing down selections below joins as it reduces the sizes of the input relations and hence
the cost of the join operation. In the cost based approach, the optimizer first generates several
plans that would correctly compute the answers to a query and computes a cost estimate for each
plan using the system maintained statistics for each relation (i.e., number of tuples, number of disk
pages occupied by the relation etc.) as well as for each index (i.e., number of distinct keys, number
of pages etc.). Subsequently, the optimizer chooses the plan with the lowest estimated cost [140].

Performance evaluation and optimization in traditional database systems is only considered in
the temporal (computational) sense. Since determining the quality of the answers is trivial given
the precise retrieval model — they are either correct or not — and therefore there is little need to
evaluate the quality of the results. The TPC [163] benchmarks are the standard benchmarks used
in this environment and are focused on computational performance. Query optimization therefore
is geared towards reducing the computational effort required to perform a query.

2.2 Uncertainty Models in Databases

Emerging applications pose an increasing demand on DBMSs to store and process imprecise in-
formation alongside precise information traditionally stored in databases. There are a number of
sources for imperfect and imprecise data and different ways to handle such problems. A good sur-
vey appears in [118], but here we focus on the models that are more applicable to Content Based
Retrieval applications. Such applications require many important extensions to existing DBMS
technologies including: (1) mechanisms to represent uncertainty in stored data, (2) extensions to
DBMS query languages to support uncertain queries, and (3) mechanisms to process uncertain
queries. Uncertainty manifests itself in data and in queries:

Uncertainty in Stored Data: Uncertainty in data may arise due to a variety of reasons from
multiple different sources. For example, in an image database, an image is represented as a
collection of visual features (e.g., color, texture, shape, etc.). These features taken together
form an imprecise representation of the image content. In a spatio-temporal database, the
location of an object may be uncertain due to the limited precision of the sensor tracking the
object and the temporal latency between successive readings.

Uncertainty in Queries: Similar to the descriptional uncertainty in stored data, uncertain queries
may arise due to a variety of reasons. For example, the user may lack the capability or find
it cumbersome to express his/her information need as a precise query over the stored data.
Even when the user has a precise information need, he/she is unable to specify the query
using the imperfect data that is used to model the objects in the database.

Using the Object Relational Model, it is possible to assign a score between a query object
and objects in the database. In such an implementation, the user maps her query into SQL and
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user-defined functions implement the imprecise operations (e.g., match between images, precision
of moving objects) and associate a score with each object retrieved. The set of retrieved objects
are sorted based on the application-specific criterion. While the ORDBMS model supports UDFs,
the relational operators are not aware of the scoring and ranking implied in the results. Done in
this way, imprecision in the processing does not permeate database query processing.

Among the many models [118] that deal with incomplete and imprecise information in databases,
we focus on two of the best known paradigms recognized as useful for representing uncertainty in
databases [40, 172, 115]. One is based on fuzzy logic and the other based on probability theory.

Fuzzy Logic for Databases. Fuzzy logic [170, 171] has been proposed for use in the context of
the relational data model [128]. Fuzzy logic rests on the recognition that many real world facts
cannot be precisely stated. Often we use subjective values to qualify subjects, “tall” could
be such an imprecise qualifier. The actual value for such an attribute cannot be determined,
as it depends on contextual information.

Under this model, attributes can have a fuzzy number associated with them, or a set of
numbers representing a fuzzy set. For Content Based Retrieval the most natural interpretation
is to assign score values in the range [0, 1] with 1 as the best score to the result of the match
of a tuple with the query [115].

Relational operators have to be suitably modified to account for conditions on these val-
ues [128]. The most common interpretations for combining scores under this model are: (1)
the maximum of the scores for the union or or operators, (2) the minimum of the scores
for the intersection or and operators, and (3) one minus the score for the negation operator.
Other numeric interpretations are possible for these operators, [118] presents more details on
the different approaches.

Probability Models for Databases. The probabilistic model is firmly rooted in probability
theory and under this interpretation the score of the match between an object and the query is
considered to be the probability that the object matched the query [115], assuming the score
is in the range [0, 1]. Then, probability theory is used to combine the values depending on the
operators involved. A key assumption which may not always hold, specially in Content Based
Retrieval applications is that of independence. Independence simplifies the computations, and
is based on the assumption that the different features extracted for objects are independent
of each other, i.e. the color content of an image is not at all related to the texture.

Under probabilistic database models, a probability is assigned to a tuple, this can be either a
number [10, 40, 91] or an interval [1]. By using an interval some of the problems introduced
by the assumption of independence can be resolved. The most straightforward method to
combine scores under this model are: (1) the sum of the probability values minus its mul-
tiplication when two probability values are involved for the union or or operators, (2) the
multiplication of probability values for the intersection or and operators, and (3) one minus
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the probability value for the negation operator. References [118, 172] present more details on
the different approaches.

VAGUE [106] presents a model that lets users choose the interpretation of a predicate before
executing a query, it does not allow the user to change the interpretation of query predicates after
the fact. Similarly, no uncertainty model in the literature [118] accounts for user subjectivity and
desire to iteratively change the interpretation of operators to make the results more appealing.

2.3 Information Retrieval

Information Retrieval (IR) is the field that historically has dealt with the search of textual docu-
ments based on a users information need expressed in textual form, IR systems typically have a
large collection of textual documents from which all those documents that match a users query
are returned. This section gives a background on modern IR [137, 8]. First, we discuss document
models used in IR and the criteria used to compute the similarity between documents. Then we
review query refinement techniques used in IR.

2.3.1 Information Retrieval Models

In an IR system, a document is represented as a collection of features (also referred to as terms).
Examples of features include words in a document, citations, bibliographic references, etc. Although
features and query models are commonly presented together in the literature, the features extracted
and the way they are obtained is largely independent of the query model, however the features
obtained need to sustain the query model. The most common features used are the words in
the document themselves. Many variations and refinements to compute these features have been
developed over time, some refinements include:

• Ignore case. This compares words and ignores whether they are in upper or lower case.

• Stop-words. Use a list of words that are too common to be meaningful such as prepositions
and connectors.

• Stemming. Reduce words to their original state, folding for example the plural and singular
forms of a word together. This reduces the number of words that are indexed and also allows
for easier word to word comparisons, i.e. child and childish will be considered equal.

• Thesauri. This allows systems to consider synonyms so that the total number of words is less
and also to gives more flexibility to users in posing queries.

Beyond these enhancements, many other more sophisticated enhancements exist such as using
noun-phrases instead of single words in hopes that phrases will contain more semantic meaning.
Another enhancement that is tied more to a specific query paradigm is that of Latent Semantic
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Indexing [8], where many words are folded into smaller categories based on mathematical principles
in hopes that this automatic method will detect when two words are synonyms and consider them
equal. Indexing of other features such as titles, authors or citations follows similar principles except
these features are stored separately.

A user specifies her information need to the system in the form of a query. Given a representation
of the user’s information need and a document collection, the IR system estimates the likelihood
that a given document matches the user’s information need. The representation of documents and
queries, and the metrics used to compute the similarity among them constitute the retrieval model
of the system. Existing retrieval models can be broadly classified into the following categories:

Boolean Models Traditionally, commercial IR systems have used the Boolean model. Systems
based on Boolean retrieval partition the set of documents into either being relevant or not
relevant and do not provide any estimate as to the relative importance of documents in a
partition to the user’s information need. The Boolean model has also been extended to allow
for ranked retrieval in the text domain (e.g. the p-norm model [136]), and in the image
retrieval domain (see our previous work in [115]).

Let {r1, r2, . . . , rk} be the set of terms in a collection. Each document is represented as a
binary-valued vector of length k where the ith element of the vector is assigned true if ri is
assigned to the document. All elements corresponding to features/terms not assigned to a
document are set to false. A query is a Boolean expression in which operands are terms. A
document whose set of terms satisfies the Boolean expression is deemed to be relevant to the
user and all other documents are considered not relevant.

Vector-based Models In the vector space model, a textual document is considered as a collection
of words. The same word can appear multiple times in the same document and thus the
notion of term frequency (tf) arises. Term frequency is the number of times a word or term
appears in a document, the higher the count, the more important the word is to the document.
Conversely, a word can appear in many documents, the document frequency (df) is the number
of documents in which the word appears at least once. A high document frequency indicates
that a term has low discrimination value among documents and thus is of little value for
retrieval. All terms in a document are then assigned weights based on a combination of the
term frequency and the document frequency of the term. To denote the penalty for a high
document frequency, this figure is usually inverted and named inverse document frequency
(idf), and is computed as: idf = log collection size

df .

Experiments have shown that the product of tf and idf is a good estimation of the weights [19,
137, 144]. The final weight wi for term i in the document is: wi = tfi × idfi Now, each
document has a weight assigned for all possible words (words not in the document have a
weight of 0). If there are Nword distinct words in the collection of all documents, then each
document can now be viewed as a point in an Nword dimensional space.
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A query is represented in the same way as a document, weights are extracted for all the
terms in the query and then documents “close” to the query point are searched for. To
determine which documents are close, or similar to a query, a similarity function is defined
over the domain of a pair of documents. The resulting value of applying this function to any
two documents, or a document and a query represented as a document, is a measure of the
similarity between the documents. A similarity of 1 indicates they are identical, and a value
of 0 indicates they are not similar at all. Many similarity measures between a document and
the query document have been proposed [137], the most common being the cosine of the angle
between the document and the query vectors in the Nword dimensional space [137] and the
origin. To compute the cosine of the angle between the two vectors, we take advantage of the
following equivalence:

D ·Q = ||D|| ||Q|| cos θ (2.1)

By rearranging 2.1, the similarity between the query and document vectors is computed as:

similarity(D, Q) =
D ·Q

||D|| ||Q|| (2.2)

D ·Q denotes the inner product of the query and document vectors defined as:

D ·Q =
i=Nword∑

i=1

Di ×Qi (2.3)

||D|| and ||Q|| denote the length or norm-2 of the vectors defined as:

||V ector|| =

√√√√
i=Nword∑

i=1

V ector2
i (2.4)

Vector models are suited for situations where all terms used to describe the document content
are of the same type, i.e. they are homogeneous.

Probabilistic Retrieval Models In these models the system estimates the probability of rele-
vance of a document to the user’s information need specified as a query. Documents are
ranked in decreasing order of probability relevance estimate. Given a document and a query,
the system computes P (R|d, q) which represents the probability that the document d will be
deemed relevant to the user’s information need expressed as the query q. These probabilities
are computed and used to rank the documents using Bayes’ theorem and a set of indepen-
dence assumptions about the distribution of terms in the documents. An example of this
category is the INQUERY system [20].

Weighted Summation Models Let T = {t1, t2, . . . , tn} be the list of terms associated to a
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document Di and S = {s1,i, s2,i, . . . , sn,i} the list of similarity values for each term of
document Di to the corresponding term in the query object Q. That is, sj,i[Q,Di] =
similarity(tj(Q), tj(Di)). In weighted summation, the individual component-wise similar-
ities are combined by attaching a weight to each similarity value and adding them together,
according to S[Q, Di] =

∑j=n
j=1 weightj × similarity(tj(Q), tj(Di)) where

∑j=n
j=1 weightj = 1.

This model is similar to the vector model in its structure. It is more flexible than the vec-
tor model in that the similarity between two terms is computed by an arbitrary similarity
function which allows the merging of heterogeneous terms or features.

Latent Semantic Indexing This family of models closely follows the vector model. The matrix
formed by all the words and documents is then reduced in dimensionality via Eigen value
analysis. Words that frequently co-occur will be folded into the same dimension, thus creating
a semantic unit. The many proposed algorithms vary in the way the dimensionality is reduced
and the distance function between the resulting lower dimensional vectors.

To compare between different methods, their retrieval performance on standard benchmarks
is compared. The typical benchmark datasets are the TREC collections [110]. Performance in
this domain is qualitative and is measured differently from database systems (execution speed).
Performance in this domain is measured with two values, precision and recall. Given a query and
an answer consisting of a set of documents, the precision is the ratio of (subjective) documents
considered relevant to the query vs. the number of returned documents. A perfect precision of 1
is obtain when every returned document is relevant to the question. The second measure is recall.
This indicates the ratio of relevant documents to the query that were retrieved vs. all relevant
documents in the collection. A perfect recall of 1 means that all relevant documents were indeed
retrieved. These two measures conflict. For once, perfect recall can be obtained by returning the
whole collection at a substantially low precision. Usually, precision recall curves are plotted to
measure a systems performance.

IR techniques are the driving force behind Internet search engines such as Altavista, Lycos,
Hotbot, Inktomi, Google and other search engine products. Many commercial systems, are not
very feature rich and trade simplicity for speed and scalability, yet their success is evident by their
widespread use.

2.3.2 Query Refinement

IR query models compute the relevance of each document to the users query and then typically
output a ranked list of answers. The computation of results is done according to the selected models
in a straightforward way.

The user may receive some good and some bad results, to enhance the retrieval performance,
the process of query refinement can be used. Query refinement consists of changing the original
query to improve its results. One way to perform query refinement is to present the user the results
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and ask her to state which are relevant and which are not; thus query refinement or relevance
feedback is the process of automatically adjusting an existing query using information fed-back by
users about the relevance of previously retrieved documents.

Query refinement methods change a query and are dependent on the retrieval method cho-
sen. There exist query refinement techniques for many methods, including the Boolean, vector,
probabilistic, and LSI models.

In the Boolean model, feedback usually takes the form of adding new conjuncts to the query.
The vector model has a widely used and simple relevance feedback mechanism. In the vector

model, a query is a point in a large dimensional space, the point can be moved to reflect the fact
that the users interest is in a different region of space. If the query point is p, and the set of relevant
points (vectors) is R and the set of non relevant points is NR, then the optimal query for the same
similarity function is [19, 137, 144]: popt = p +

∑
r∈R

r
|R| −

∑
nr∈NR

nr
|NR| where |R| and |NR| are

the number of points in the relevant and non relevant sets. In general R and NR are not known,
but are approximated by the users judgment of the return set. The above technique is applied
to arrive at a better approximation of the optimal query. By iteratively repeating this procedure
we asymptotically approach popt. In addition to shifting the location of the query point, it is also
possible to change the weights in each dimension thus changing the shape of the query area (that
is, the retrieval model used to compute similarity between objects). A different approach presented
in [125] is to use multiple points to compute a query result instead of a single one. This allows
to form irregularly shaped query regions and has proven to give better feedback performance than
query point movement at a low increase in computational cost. The approach presented in [169]
follows a multi-point query strategy with an aggregation function that allows for concave query
regions that can even represent query regions with “holes”.

Probabilistic models base their relevance feedback in propagating probability changes through
i.e. a Bayesian network such as used in INQUERY [20].

In weighted summation queries, the similarities of query to object features are combined through
weighted summation, and then propagated up the query tree through the same mechanism. In this
relevance feedback process, the individual weights are changed to better reflect the users information
need. Without modifying the structure of the query tree, the individual weights are updated. To
update the weights, the result lists returned for each node in the query tree are cut off at a certain
similarity value, then all the relevant objects indicated by the user are searched in these lists. Many
strategies exist to select the new weight for each node that produced a list including: counting the
number of relevant objects in the list, minimum similarity value among all objects in the list, and
sum the similarity values for all relevant objects in the list [123]. Naturally, this process does not
yield weights that add up to 1. The final step is to normalize the weights so that they add up to
1 for all children of a node. Once this process is complete, the query is re–executed and shown to
the user for another iteration of relevance feedback.
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2.4 Image Retrieval

With the dramatic increase in computational power and software flexibility, other types of data
beyond text have become increasingly more important such as images, time-series, etc. which now
demand retrieval techniques similar to those provided by traditional text IR systems. The retrieval
paradigm offered by IR systems has been termed content-based retrieval to reflect the nature of
the indexing which centers on the semantics of the data rather than the data itself. To this end,
much research has been conducted to extend the IR techniques to other domains.

A number of image retrieval systems exist that have adapted IR techniques. One such system is
our MARS [75] system, where suitably adapted Boolean [115], vector and summation models [134,
123] are used for image based retrieval. Within the context of the MARS system, we developed a
number of query refinement techniques to complete the image retrieval process [134, 125, 123].

Existing approaches to multimedia information retrieval belong to one of the following two cat-
egories. The first approach, followed by many existing multimedia database systems, is to annotate
multimedia data with text [127, 152, 51, 81], and then use existing textual information retrieval
systems [137, 85, 88, 50] to search for multimedia information indirectly using the annotations. Due
to the difficulty in capturing multimedia content using textual annotations, non-scalability of the
approach to large data sets (due to the high degree of manual effort required in producing the an-
notations), and the high degree of subjectivity of the annotations to the human indexer, the second
approach in which visual features are directly used for retrieval has emerged. Examples of such an
approach include commercial products like Query By Image Content (QBIC) developed at the IBM
Almaden Research Center [48, 52], the Virage system developed by Virage Technologies Inc. [7],
and the Visual RetrievalWare developed by Excalibur Technologies. Related research prototypes
being developed in academia include the PhotoBook project at MIT [119, 121, 120], Alexandria
project at UC, Santa Barbara [100], VisualSeek [147], Advent system at Columbia University [150],
and the Chabot project at UC, Berkeley [111].

Similar to MARS, the objective of these systems is to support content-based retrieval over
images and multimedia objects. The focus of these efforts has been on techniques to efficiently
extract and represent low-level visual features from images and multimedia objects based on which
users may wish to retrieve multimedia information. For example, the QBIC, Virage and Visual Re-
trievalWare systems have developed powerful representations for lower-level image features: color,
texture, shape, appearance, and layout. Research in the Advent system has explored mechanisms
for extracting color and texture features in both compressed as well as uncompressed images. While
this research has resulted in many significant contributions in feature extraction and representation,
the retrieval mechanisms supported by these systems have, so far, been comparatively primitive.
Typically, users retrieve objects directly based on their low-level feature values (e.g., retrieve images
that contain a lot of “blue”), or using an adhoc combination of features via user-specified weights
(e.g., retrieve images similar in color and texture to a given image, where weight of color is 0.8 and
that of texture is 0.2).
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All systems model an image as a set of features, for example the color and texture features and
for each feature a set of representations, for example color histogram and color moments for the
color feature (see below). For each feature a function is used to compute the degree to which two
instances of the feature representation match. The matching functions can be based on a distance
measure where a distance of 0 between two features means they match completely, and values above
0 indicate reduced match, or they can be based on a similarity match where 1 means perfect match
and as values go to 0, the quality of the match decreases. We make no specific assumption either
way other than requiring that all functions be consistent in that they all return a score which can
be either distance or similarity based, but not mixed.

To determine the degree of match between two images, some combination of the individual fea-
ture matches is used. Typically this takes the form of a Boolean algebra with fuzzy or probabilistic
interpretations [115] or a weighted summation model where the final score is a sum of the individual
feature to feature match between a query and an image [123].

The retrieval performance of an image database is inherently limited by the nature and the
quality of the features used to represent the image content. We briefly describe some image features.
Detailed discussion on the rationale and the quality of the features can be found in references [49,
160, 102, 105, 135].
Color Features: The color feature is one of the most widely used visual features in image retrieval.
Many approaches to color representation, such as color histogram [158], color moments [157], color
sets [149], have been proposed in the past few years.
Texture Features: Texture refers to the visual patterns that have properties of homogeneity that
do not result from the presence of only a single color or intensity [151]. It is an innate property of
virtually all surfaces, including clouds, trees, bricks, hair, fabric, etc. Texture contains important
information about the structural arrangement of surfaces and their relationship to the surrounding
environment [68]. Because of its importance and usefulness in Pattern Recognition and Computer
Vision, extensive research has been conducted on texture representation in the past three decades,
including the co-occurrence matrix based representation [68], Tamura texture representation [161],
and wavelet based representation [148, 30, 90, 63, 89, 162]. Many research results have shown that
the wavelet based texture representation achieves good performance in texture classification [148].
Shape Features: Shape of an object in an image is represented by its boundary. A technique
for storing the boundary of an object using a modified Fourier descriptor (MFD) is described
in [135]. The Euclidean distance can be used to measure similarity between two shapes, how-
ever [135] proposes a similarity measure based on standard deviation that performs significantly
better compared to the simple Euclidean distance. The representation and similarity measure pro-
vide invariance to translation, rotation, and scaling of shapes, as well as the starting point used in
defining the boundary sequence. A large number of shape representations exist including Chamfer
shape descriptor [133] as well as our own adaptive shape representation [26].
Color Layout Features: Although the global color feature is simple to calculate and can provide
reasonable discriminating power in retrieval, it tends to give too many false alarms when the image
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collection is large. Many research results suggest that using color layout (both color feature and
spatial relations) is a better solution. Systems that use color layout include Blobworld [24] and
VisualSeek [147].

Depending on the extracted feature, some normalization may be needed [115, 134]. The normal-
ization process serves two purposes: (1) It puts an equal emphasis on each feature element within
a feature vector. To see the importance of this, notice that in the texture representation, the fea-
ture elements may be different physical quantities. Their magnitudes can vary drastically, thereby
biasing the distance measure. This is overcome by the process of intra-feature normalization. (2)
It maps the distance values of the query from each atomic feature into the range [0,1] so that they
can be interpreted as the degree of membership in the fuzzy model or relevance probability in the
probabilistic model, or just a similarity score for the weighted summation model. While some simi-
larity functions naturally return a value in the range of [0, 1], e.g. the color histogram intersection;
others do not, e.g. the Euclidean distance used in texture. In the latter case the distances need
to be converted to the range of [0, 1] before they can be used. This is referred to as inter-feature
normalization.

2.5 Integration of Information Retrieval with Databases

There is a body of work relating to the integration of IR and DBMS systems [73, 94, 38, 54,
64, 93, 153, 166]. Their motivation for exploring such an integration is a result of increasing
requirements for IR systems to support (1) access to information (e.g., SGML documents) by not
only their content, but also their structure. (2) online insertion, deletion and retrieval of documents.
Traditionally, IR systems have ignored document structure in retrieval and have only supported
off-line creation and modification of indices. The work can be divided into two categories, data
models developed for IR integration based on probabilistic data models and experimental system
integration resulting in prototypes.

2.5.1 Model Based Integration

From the theoretical perspective, database and information retrieval systems can be characterized
according to table 2.1 [93]. The last line in table 2.1 was not taken from the references, instead
we feel that this is a key distinction that is so far missing in the literature and is integral to our
approach: SQL queries are stateless, while we introduce a session query, in which an original query
is refined over multiple iterations.

Few theoretical frameworks for integration of IR and DBMSs exist. Those that exist propose
some imprecise relational data model that may support an IR system layered on top of it. Conse-
quently, none of these models provide features such as query refinement or descriptions to perform
query execution.

Fuhr proposed a model for the integration of IR and DB systems [54, 55, 56]. The model
presents a probabilistic relational algebra that it based on intentional semantics. The benefit of the
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Table 2.1: Comparison between Information Retrieval and Data Retrieval Approaches to Querying

Concept Information Retrieval Data Retrieval
1 Retrieval Models Probabilistic Determinate
2 Indexing Derived form contents Complete Items
3 Matching/Retrieval Partial or “best” match Exact match
4 Query types Natural language Structured
5 Results criteria Relevance Any match
6 Results ordering Ranked Arbitrary
7 Query duration Iterative Stateless

approach is to provide a relational database schema that can store the degree to which a textual
term relates to a document. The limitations of his approach include:

• No specification how to process queries and do optimization.

• There is no support for query refinement.

• The storage of data is more akin to an index than a data type and thus requires specific
operations.

• Text terms are handled but no other data-types are supported, and the algebra to extend
relational operators is customized to the textual representation.

A fundamental problem with Fuhrs approach is that the information stored in relational tables
corresponds to the indexing done in IR systems thus providing the wrong level of abstraction. It
is more natural to think of the term information in the context a database index. Fuhrs approach
can be characterized to be in the extended RDBMS approach described below, however he does not
consider general purpose data types.

In addition to models explicitly attempting the integration of IR support into DBMSs, there
are modified relational models to incorporate uncertainty.

2.5.2 Experimental System Integration

In contrast to theoretical approaches, more practical implementations exist. The general consensus
in these projects is that building a fully integrated IR–DBMS system is too much work. Rather
than do that, they rely on some already existing DBMS (relational or object oriented) and in some
way either layer or use a parallel IR system. From a practical point of view, [73] presented a five
level hierarchy for integrating DB and IR systems. This hierarchy is:

The standard RDBMS approach uses a standard RDBMS to store IR data in it. No facilities
particular to IR are provided in the DBMS but need to be layered on top with an application
program.
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The extended RDBMS approach extends a RDBMS with IR type data-types (text) and some
functions on them (regular expression matches). Examples of this approach are the Informix
Datablades, DB2 Extenders and Oracle Cartridges.

The extended IR approach adds some relational capability to an IR system.

External integration approach in which IR and DBMS systems coexist in the same environ-
ment with a common query interface. The interface separates the query into the IR and
DBMS parts and send each to the appropriate system and then merges the results.

The full integration approach combines the functionality of both systems into a hybrid DBMS
capable of managing IR and traditional DBMS data.

In an early attempt, [94] suggests the standard RDBMS approach although they acknowledge
its limitations. Storing document terms in a straightforward manner in an RDBMS is slow for
execution and does not provide for any advanced retrieval techniques.

Another early attempt is described in [38]. This attempt corresponds to the standard RDBMS
interpretation, with some description of how to layer IR functions on top.

A much more advanced system is OCTOPUS used by the Dutch police [74]. The basic data
management is conducted on structured (exact) data, however several functions supporting less
structured data (text) are supported. Ranking and query refinement are not supported, but some
desirable data integrity features are (transactions).

The HYDRA hybrid DB and IR system by the Integrated Publication and Information Systems
Institute is a combination of full and external integration [64]. In reality, what it does is to store
common (text) IR inverted files in INQUERY [20]. Queries are posed via a proprietary query
facility (form), that separates the exact from the probabilistic predicates, the IR part of the query
is sent to INQUERY the exact part is sent to Sybase. Results are then stored in a temporary
table, pruned with a threshold and combined via SQL with exact matching data. This approach
is clearly poor as it completely ignores issues of efficient query execution by the simple fact that
the RDBMS and INQUERY really do not know about each others functions. Furthermore, the
problems of replicated and consistent data arises.

The GIPSY geographic IR system focuses on applying IR techniques to the geographic do-
main [93]. GIPSY tries to integrate IR text and spatial (fuzzy) matching with some exact data
(building locations, etc.). GIPSY follows a proprietary implementation where a DBMS is not
considered, exact data is obtained from flat files.

The FIRE approach [153] uses an OODBMS (ObjectStore) to implement an IR system on
top of it. In some sense this corresponds to the standard DBMS integration approach and can be
considered to be simple. The authors claim they can rely on the OODBMS to perform optimization,
however, the DBMS does not know about the IR operations and these need to be included as part
of a users application code.
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In [166], two integration attempts of the INQUERY text IR system with an RDBMS are pre-
sented. The first attempt users the DEC RDB DBMS to store the INQUERY indexes in it, effec-
tively using RDB as the underlying file system from which INQUERY obtains its data. The second,
more integrated approach again stores the inverted files into the RDBMS but uses functions that
implement the basic INQUERY operators (PAND, POR, ...) in the where clause. The DBMS does
not understand the operation being performed and has trouble optimizing for it. For optimization,
the authors rely on a cooperative index that should be but is not integrated into the DBMS engine.
This is probably the most complete system integration attempt in the literature.

The extended integration approach is used currently by most commercial database systems
through their object relational capabilities. This approach has the advantage of simplicity with
its primary limitations including issues of efficiency, ad hoc semantics (it is not always feasible to
decompose the query into separate IR and DB parts). Informix uses user defined functions through
its Datablades, with Excalibur providing its RetrievalWare software for text search.

IBM DB2 supports an external integration approach where the text extender, through external
table function calls [39], contacts an external server and simulates a result table through thresh-
olding and does not provide transactional semantics.

None of the theoretic nor implementation attempts ever mention support for query refinement.
Several IR systems do support this but they are not integrated with a database system in any way.
The most notable exception is INQUERY. When this system is layered on top of an RDBMS [166],
it does provide for relevance feedback, but the RDBMS is used as a file system not a fully integrated
(from the query processing angle) IR–DBMS.

The external integration approach is the most popular one but suffers from some shortcomings.
The use of a threshold to convert an imprecise query into a set requires more work by the application
and is the wrong abstraction. Also, no index can be exploited since there is no global optimization
and an extensive search needs to be done.
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Chapter 3

Data and Query Model

3.1 Introduction

This section describes our approach for an extended DBMS that supports similarity-based query-
ing, ranking, rich data types, and query refinement to support content-based retrieval in addition
to precise retrieval. Our approach is general since it supports any type of data and is not tied
to a specific domain. The proposed system architecture follows the object-relational model and
is extensible with user-defined types and functions. The set of types and functions defined by
an application is collectively referred to as an Application Module Plug-in. In addition to the
usual object-relational functionality (ADTs and UDFs), we allow applications to define (1) simi-
larity functions, (2) functions that provide content extraction, and (3) functions that enable query
refinement.1 We present a data and matching model based on three major concepts:

• Ranked sets are an extension of relations with one extra numeric score attribute for each
tuple. This score induces a total order or ranking in the relation.

• Similarity-based predicates that match objects based on their content. These predicates return
a score interpreted as a similarity value in the range [0,1] where 1 means total similarity. Our
model supports the mixing of similarity and precise conditions in the same query as well as
using all the traditional relational operators in a suitably modified fashion.

• The session, or iterative query is a generalization of querying where a query is posed repeatedly
with small modifications made by the DBMS using user input on the relevance of answers.

A complete retrieval model consists of (1) a data (object) model, (2) a (similarity-based) match-
ing model, and (3) a query refinement model. To support our view of content-based retrieval, some
changes are needed to relations, predicates, operators, and functions. These are described in the
following sections.

1Functions that cooperate with a query optimizer (e.g., to provide cost estimates) are also considered but not
discussed further here.
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3.2 Data Model

The data model we follow is based on the object-relational model. The user creates new types using
base types and adds functions to operate on these types. Some of the user specified functions are
mandatory and address such things as input and output conversion, similarity, query refinement,
etc. Other type-specific functions are allowed too, for example to crop an image.

Definition 3.2.1 (Type) A type is a template for possible values and a set of functions, predicates
and operators that operate on these values and define their behavior. Types can be simple (“built-
in”), or composed based on arrays, structures and inheritance. The domain of a type is the set of
all such values.

Definition 3.2.2 (Object) An object is one of all possible values in the domain of a type, this is
also called an instance of its type: object ∈ domain(type).

In the rest of this paper, we use type and domain interchangeably for simplicity.

Example 3.2.1 (Geographic location) An example data type for two dimensional geographic
locations (see example 1.0.2) is the type location(x: real, y: real), and (7,9) is an example object
based on this type.

Objects are values stored and managed in the database server and are logically arranged into
rows called tuples. We extend the notion of a tuple with an extra score attribute2 that is a number
in the range [0, 1].

Definition 3.2.3 (Tuple) Given a set of n pairs 〈ai, Di〉, i = 1, . . . , n called a schema where ai

is a label called an attribute and Di is a domain based on type Ti, and a pair 〈score, [0, 1]〉 that
denotes a special attribute named score and its domain is a real number between 0 and 1, a tuple t

is an element of the Cartesian product of [0, 1] and D1, D2, . . . , Dn: t ∈ [0, 1]×D1×D2×· · ·×Dn.
The ith value (attribute) of tuple t is referred to by t.ai and has a domain of values of Di; t.score

is the score of tuple t.

Definition 3.2.4 (Ranked Set) A ranked set RS is a set of tuples t with t.score > 0, and
following definition 3.2.3 it is a subset of the Cartesian product of (0, 1] and D1, D2, . . . , Dn:
RS ⊆ (0, 1] × D1 × D2 × · · · × Dn. The jth tuple in a ranked set RS is denoted by tj(RS),
its ith attribute as tj(RS).ai and its content is an object of the domain (type) Di. The attribute
score induces a total order in the set. Assume there are m tuples, the ranked set with the tuples
t1, t2, . . . tm is ordered based on the score attribute as: t1.score ≥ t2.score ≥ ... ≥ tm.score. The
rank of tuple tj is j.

2For practical purposes, tuples have yet one more attribute named tid which is a unique tuple identifier and its
domain is the set of natural integers. We do not consider this attribute further.
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Score Name Age Gpa
0.8 Jim 20 3.8
0.6 Jane 22 4.0
0.2 Joe 19 2.5
... ... ... ...

Figure 3.1: Example Ranked Set

Thus, ranked sets contain only tuples with a score strictly larger than 0 and are logically (though
not necessarily physically) always sorted on the score value. For base ranked sets (tables), this score
is 1 for all tuples. In fuzzy or probabilistic databases, this score may be interpreted as the degree
of membership or probability that a tuple is in a relation [118]. Here, we are not interested in
representing uncertainty in the data itself, but in the similarity-based predicates, i.e., which tuples
better fulfill a query.

Example 3.2.2 (Ranked Set) Figure 3.1 shows an example ranked set over a table with three
attributes: name, age, and gpa.

3.3 Similarity Matching Model

A domain (type) supports a number of related predicates and operators that are applicable to that
domain. An example set of operators which can be used whenever a domain has a total order (such
as numeric values) is the set {<,≤, =, 6=,≥, >}. The conventional object-relational model is based
on precise (also called crisp) retrieval semantics. We retain precise predicates and operators and
provide alternate versions that extend such precise predicates to imprecise, score-based versions.
The need to retain precise querying is natural since it conforms to the current practice in databases
which we seek to complement, not replace. Precise predicates and operators return a score value
in the (binary) set {0, 1} for the traditional {false, true} Boolean values, for similarity predicates
and operators we generalize this as follows:

Definition 3.3.1 (Similarity Predicates and Operators) A similarity-based version of each
precise predicate and operator is defined. These similarity-based versions return a score value in
the range [0, 1] with 1 indicating total similarity and 0 indicating no similarity. Predicates can
involve an attribute and query value(s) for a selection, or two attributes for a join predicate.

For user-defined types, these are user supplied, while the system supplies inter-domain operators
for conjunction, disjunction and negation. The similarity version is selected by prepending a “∼”
to the name of the precise predicate or operator. The meaning of the similarity based operators
(∼and, ∼or, ∼not) is not fixed to any particular interpretation, it can be based on probability
theory, fuzzy logic, or some ad-hoc domain specific interpretation.

Example 3.3.1 (Precise vs. Similarity Predicate) In example 1.0.2, while searching for high
paying jobs, the applicant may use the greater than operator. The predicate salary > 80, 000 returns
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false or true (0 or 1 here) depending on the salary listed in a job offer. Under an example similarity
interpretation, salary ∼> 80, 000 has a score of 1 if salary > 80, 000, 0 if salary < 50, 000 and
score = salary−50,000

30,000 for 50, 000 ≤ salary ≤ 80, 000 that includes lower paying jobs that might be of
interest but with a lower score. (Note that score ∈ [0,1]).

While precise predicates operate on precise values, similarity-based predicates, due to their
intrinsic imprecise nature, accept multiple query values where the precise version accepts only a
single value.

Definition 3.3.2 (Multi-point Similarity Predicate) Similarity predicates accept a set of val-
ues where the precise predicate version accepts a single value. This is termed a multi-point query as
opposed to using a single query value which is a single-point query [169, 125]. The interpretation
of evaluating a predicate with a set of values is chosen by the developer of the user-defined type.

Example 3.3.2 (Multi-Point Similarity Predicate) With geographic locations, a common de-
sire is to find places similar or close to one or more places. Using example 3.2.1, location ∼=
“(7, 9), (8, 9)” may be interpreted as location close to (7, 9) or (8, 9).

Given that similarity can be interpreted in different ways, we extend similarity predicates with
an optional set of parameters that affect the behavior of the similarity predicate.

Definition 3.3.3 (Similarity predicate parameters) Following a (single– or multi–point) sim-
ilarity predicate, an optional set of configuration parameters can be specified enclosed in parenthesis.
These parameters are passed “as is” to the function that implements the similarity computation,
and remain constant during the execution of a query.

Example 3.3.3 (Similarity predicate parameters) Example 3.3.2 shows a similarity predi-
cate based on Euclidean distance with respect to two query points. We want to give preference
to points that relate to query points in a certain orientation. To achieve this goal, we spec-
ify weights for each dimension to emphasize the dimension’s importance. The predicate is then:
location ∼= “(7, 9), (8, 9)”(0.8, 0.2) where alignment in the x dimension is more important (0.8)
than alignment in the y dimension (0.2).3

Conditional expressions are used to compute scores based on values contained in attributes
and/or literals and are based on both, precise and similarity-based predicates and operators.

Definition 3.3.4 (Conditional Expressions) Conditions, or conditional expressions are formed
as conventional Boolean expressions. These expressions are constructed from atomic predicates on
values and attributes that are defined for each type, these predicates can be precise or similarity
based. Similarity based predicates are augmented with an optional weight parameter that indicates

3A general rotation would require a rotation matrix, here we restricted orientation to the principal axes for
demonstration purposes only.
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the importance of the predicate to the query. We place this weight after the predicate enclosed in
sqare brackets. The interpretation of this weight is up to a particulat implementation (see chapter 4).
Expressions may be combined with precise Boolean conjunction (∧), disjunction (∨), and negation
(¬) operators, or similarity Boolean conjunction (∼ ∧), disjunction (∼ ∨), and negation (∼ ¬)
operators. Parentheses “( )” are used to nest expressions.

Example 3.3.4 (Conditional Expression) An example of a conditional expression p (cf. ex-
ample 1.0.2) is p = (salary > 80, 000 ∧ (location ∼= “(7, 9), (8, 9)”[2.0] ∼ ∨ job position =
“programmer”[1.0])) where salary > 80, 000, and job position = “programmer” are precise pred-
icates, and location ∼= ((7, 9), (8, 9)) is a similarity predicate, and ∧ is a precise operator while
∼ ∨ is a similarity or operator. Here, location ∼= “(7, 9), (8, 9)”[2.0] has a weight of 2.0, and is
more important than job position = “programmer”[1.0] which has a weight of 1.0.

We use p(t) to denote the result of computing the score for a tuple t based on the conditional
expression p: t.score = p(t). Conditions may contain user defined precise operators that return
values in {0, 1} and similarity predicates that return values in the range [0, 1]. While the interpre-
tation of similarity operators is provided by a system realization (cf. chapter 4), we must provide
an interpretation for precise predicates that is robust in the presence of scores in the range [0, 1]:

Definition 3.3.5 (Precise Operator Semantics) Precise operators follow the traditional Boolean
interpretation, yet, since they manipulate scores, we must fix their interpretation in such a way that
is consistent with Boolean semantics if only precise predicates are present, and still be compatible
with the use of scores. We thus fix their semantics as follows: ∧ uses the min and ∨ the max
among the scores, and ¬ uses (1− score), this interpretation is consistent with traditional Boolean
semantics. Interpretation of the similarity versions is left to a system realization (cf. chapter 4).
The precedence among these operators in decreasing order is: ¬,∼ ¬,∧,∼ ∧,∨,∼ ∨.

Note that although this appears to be a fuzzy semantics of operators, it is really a natural extension
of precise operators to handle scores, i.e, for a condition p = (a = 1∧ b ∼> 0), if b ∼> 0 has a score
of 0.8, then a = 1 may be either 0 or 1. The overall score should naturally reflect that if a = 1 is
true, then the score should be that of b ∼> 0 which is 0.8.

Example 3.3.5 (Conditional Expression Evaluation) Following example 3.3.4, if p = (salary >

80, 000∧ (location ∼= ((7, 9), (8, 9)) ∼ ∨ job position = “programmer”)) and a tuple t1 =(score,
70,000, (0,0), “programmer”), we compute p(t1) as a combination of the scores of individual pred-
icates: 70, 000 > 80, 000 is 0, (0, 0) ∼= ((7, 9), (8, 9)) is 0.7 under some interpretation of ∼=
for location, and “programmer” = “programmer” is 1 since they are equal. To combine the
scores 0.7 and 1 with the ∼ ∨ operator, an interpretation must be provided (cf. chapter 4), here
we can choose a probabilistic interpretation [115], thus the score for (0, 0) ∼= ((7, 9), (8, 9)) ∼
∨ “programmer” = “programmer” is (0.7 + 1.0) − (0.7 × 1.0) = 0.7. To combine this with the
score for 70, 000 > 80, 000 which is 0 with the ∧ operator, we use min(0, 0.7) = 0 (definition 3.3.5)
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and the final result is p(t1) = 0. For another tuple t2 =(score, 90,000, (0,0), “manager”), the final
score is p(t2) = min(1, (0.7 + 0) − (0.7 × 0)) = 0.7 under the above assumptions. In this example,
we ignore the optional weights since their interpretation depends on the actual model for similarity
operators, this is discussed in chapter 4.

We now present an algebra that uses ranked sets and conditional expressions that involve precise
and similarity predicates and operators.

3.3.1 Ranked Set Algebra

We develop a ranked set algebra that extends the relational algebra to support our model and
present how the operators change. We present interpretations for a top operator and the basic
relational algebra operators: project (σ), select (π), join (./), cross product (×), union (∪), and
difference (−). Two of these operators (σ, ./), which include a condition to determine which tuples
are output and their ranking, have two versions. One that uses the original ranking of the input
ranked sets and combines it with the outcome of evaluating the condition, and a second version
(denoted by σ̂, and .̂/) that replaces the score of the input relations regardless of the original
score or ranking. The purpose of these alternate operators that ignore original ranking is for query
optimization and will become clear later.

For each ranked set RS we also maintain a set of attributes U denoted by RSU where the set
U includes those attributes that may affect the ranking of the output. This set is kept so that
columns that affect the ranking are not removed by projection but instead merely hidden away
from the user, the purpose being for query refinement algorithms to access and re-use the values of
attributes that affect the ranking.

Definition 3.3.6 (Ranking Attributes) For a condition expression p, let ranking attributes(p)
denote the set of attributes in p that affect the ranking of a tuple.

Example 3.3.6 (Ranking Attributes) Following example 3.3.5, for the expression p = (salary >

80, 000 ∧ (location ∼= (7, 9) ∼ ∨ job position = “programmer”)) the ranking attributes are:
ranking attributes(p) = {location, job position}. The location attribute is trivially included
since it participates in a similarity predicate. The attribute job position is also included despite
job position = “programmer” being a precise expression, since the ∼ ∨ (similarity or) uses its
result which can affect the ranking depending on the model chosen for ∼ ∨. The reason to exclude
salary is that the precise predicate salary > 80, 000, in conjunction with the precise ∧ ( and) oper-
ator, has the effect of either preserving the score computed by other subexpressions, or setting it to
0 thus indicating a tuple with that score to be removed and does not otherwise affect any ranking
in a ranked set. Another example is q = (location ∼= (7, 9) ∨ job position = “programmer”),
where ranking attributes(q) = {location, job position} since location participates in a similarity
predicate and the result of job position = “programmer” may increase the score or leave it alone
which may affect ranking.
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We define the following notation for the discussion: x ≺ y denotes that tuple x is ranked better
than tuple y (x.score > y.score), x ¹ y denotes that x and y are equally ranked or x ≺ y (x.score ≥
y.score), conversely, Â, and º denote the symmetric relationships. We use x ≡ y to denote tuples
that have equal attributes except for the score (∀a ∈ schema({x, y}) − {score}, x.a = y.a) (cf.
definition 3.2.3). For example, if x = (0.8, “Joe”, 31, “SQL”, “NY ”) and y = (0.6, “Al”, 25, “C +
+”, “NJ”), then x ≺ y.

3.3.1.1 Top

We present two variations of a top operator. One version of top denoted by top(RSU ) returns
the top ranked tuple in RSU : top(RSU ) = t | (t ∈ RSU ) ∧ (∀x ∈ RSU − {t}, t ¹ x). Since
RSU is ranked, this is simply the first tuple. The second variation returns a new ranked set with
the n top ranked tuples (denoted by the subscript n): topn(RSU ) = {t | (t = top(RSU ) ∨ t ∈
topn−1(RSU − {top(RSU )})) ∧ n ≥ 1 ∧ RSU 6= ∅}. The set of attributes U is unchanged. We
assume there is a special value for n denoted by all which makes n = |RSU | and returns the whole
ranked set RSU . Note that trivially RSU = topall(RSU ).

3.3.1.2 Projection

The projection operator π reduces the number of columns of a relation or ranked set. If S is a
subset of attributes of RSU , then πS(RSU ) has the columns in (S ∪ U) ∩ schema(RSU ). The
ranked set, after projecting on the attributes in (S ∪ U), obeys the original ranking, i.e., if tuple
x is ranked above tuple y after the projection, x was also ranked above y before the projection:
x ∈ RSU ∧ y ∈ RSU ∧ x ¹ y ∧ x1 = πS∪U (x) ∈ πS(RSU ) ∧ y1 = πS∪U (y) ∈ πS(RSU ) ⇒ (x1 ¹
y1 ∨ x1 ≡ y1). The attributes in the set U and not in the list of attributes to project (U − S) are
marked as hidden attributes and are present in the result, but not returned to the user. Projection
may result in duplicate tuples (x ≡ y) which are removed by choosing the highest scoring tuple
among the duplicates. For projection, the set of attributes U is unchanged and the projection is
computed as:
πS(RSU ) = {t | t1 ∈ RSU ∧ t.score = t1.score ∧ (∀a ∈ schema(RSU ) ∩ (S ∪ U), t.a = t1.a) ∧

(6 ∃t2 ∈ RSU | ∀a ∈ schema(RSU ) ∩ (S ∪ U), t2.a = t.a ∧ t2 ¹ t)}
The first part of the formula keeps those attributes of t that are requested in S or are in U , while
the second line of the formula removes duplicates.

3.3.1.3 Selection

The select operator σ removes and/or re-ranks tuples from a ranked set using a selection condi-
tion. A selection condition p may be either precise, (i.e., salary = 50, 000), similarity-based (i.e.,
location ∼= (7, 9)), or mixed (i.e., salary = 50, 000 ∼ ∧ location ∼= (7, 9)). Since selection uses
a condition, there are two versions of the operator, σp(RSU ) uses the original ranking and scores
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from RSU and combines them with the evaluation of p, and σ̂p(RSU ) which ignores the original
ranking and replaces the score with the result of evaluating p:
σp(RSV ) = {t | t1 ∈ RSV ∧ t ≡ t1 ∧ t.score = min(t1.score, p(t1))}
σ̂p(RSV ) = {t | t1 ∈ RSV ∧ t ≡ t1 ∧ t.score = p(t1)}
For both operators, the attribute set U is augmented with those attributes of the condition that
affect the ranking: U = V ∪ ranking attributes(p). The σ operator uses min to incorporate the
original ranking with p, this acts as a precise conjunction and is consistent with the conventional
relational algebra equivalence σp(σq(RSU )) = σp∧q(RSU ). If p is precise, then the ranking is not
altered, only some tuples are returned. If p is similarity-based or mixed, then re-ranking may occur.

Example 3.3.7 (Image Retrieval) An example selection for our multimedia example that se-
lects wildlife images and ranks them on image features is:
σ(color∼=c1 ∼∧ texture∼=t1)∧category=“wildlife”(image table). This is equivalent to
σcolor∼=c1 ∼∧ texture∼=t1(σcategory=“wildlife”(image table)). The σ̂ operator can be used to push a
similarity condition as in: σ̂color∼=c1 ∼∧ texture∼=t1(σtexture∼=t1∧category=“wildlife”(image table)).
Subexpressions that affect ranking are retained in the σ̂ operator to correctly compute scores.

3.3.1.4 Join and Cross Product

The join operator ./ forms a new ranked set based on two input ranked sets and a join condition
p which can be precise, approximate or mixed. The cross product is a special case of join with a
precise join condition that always evaluates to true (./true). In join, tuples from the two inputs are
combined into a new tuple by combining all the attributes of the input ranked sets. This tuple is
then subjected to the join condition and the score appropriately updated:
RSV

1 ./p RSW
2 = {t | t1 ∈ RSV

1 ∧ t2 ∈ RSW
2 ∧ schema(t) = schema(t1) ∪ schema(t2) ∧

(∀a ∈ schema(t1)−{score}, t.a = t1.a)∧t.score = min(t1.score, t2.score, p(t))∧
(∀b ∈ schema(t2)− {score}, t.b = t2.b)}

The ranking attribute set U is computed as: U = V ∪ W ∪ ranking attributes(p). As in selection,
the ranking of the inputs is preserved by combining it with the outcome of the join condition as a
precise conjunction (min).

The join operator, which supports a join condition, has an alternate version that replaces the
original score with that computed by the condition:
RSV

1 .̂/pRSW
2 = {t | t1 ∈ RSV

1 ∧t2 ∈ RSW
2 ∧schema(t) = schema(t1)∪schema(t2)∧t.score = p(t)∧

(∀a ∈ schema(t1)−{score}, t.a = t1.a)∧(∀b ∈ schema(t2)−{score}, t.b = t2.b)}
As above, the ranking attribute set U is computes as: U = V ∪ W ∪ ranking attributes(p).

This interpretation in general requires computing the entire answer and then sorting it on the
score. In our context, the primary purpose of this operator is to push selections down, and utilizing
their results. While this operator re-assigns the score, we assume that inputs are already ranked
on subexpressions of the join condition. Section 3.3.2 presents cases where this is useful.
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Figure 3.2: Ranked Set Join

Example 3.3.8 (Job Applications) Our job application example (example 1.0.2) has the base
ranked sets: applicant(name, age, resume, home location, desired salary) and jobs(description,
location, salary, position). The following query matches applicants to positions based on skills and
salary:
applicant ./resume∼=description ∼∧ desired salary∼=salary jobs.

Example 3.3.9 (Join Results) Figure 3.2 shows the results we expect from a join without a
condition between tables A and B. The output is a ranked set.

3.3.1.5 Union

The union (∪) of two ranked sets produces a ranked set with tuples from both input ranked sets.
A tuple appears in the answer RSU because it appears in either RSV

1 , or RSW
2 , or in both. If a

tuple appears in both (a duplicate), the tuple with the higher score is returned and any duplicates
discarded. Tuples that appear in RSU due to RSV

1 follow the original ranking of RSV
1 while tuples

is RSU due to RSW
2 follow the original ranking of RSW

2 :
RSV

1 ∪RSW
2 = {t | (t ∈ RSV

1 ∧ t 6∈ RSW
2 ) ∨ (t ∈ RSW

2 ∧ t 6∈ RSV
1 ) ∨

(t1 ∈ RSV
1 ∧ t2 ∈ RSW

2 ∧ t ≡ t1 ≡ t2 ∧ t.score = max(t1.score, t2.score))}
The attribute set U combines V and W : U = V ∪W .

3.3.1.6 Difference

The difference operator (−) subtracts RSW
2 from RSV

1 by adjusting the scores of tuples. The score
for a tuple t is the difference of the scores for t in RSV

1 and RSW
2 : RSV

1 −RSW
2 = {t | (t ∈ RSV

1 ∧t 6∈
RSW

2 ) ∨ (t1 ∈ RSV
1 ∧ t2 ∈ RSW

2 ∧ t ≡ t1 ≡ t2 ∧ (t.score = t1.score− t2.score) > 0)}. The attribute
set U is computed as: U = V ∪W .

3.3.2 Equivalences in Ranked Set Algebra

In this section we present some equivalences and containments over the new algebra for ranked sets
we presented above. Relevant transformations are presented whose goal is to enable rewriting of
algebra expressions to equivalent algebra expressions. These results can be used to lower the cost
of query processing, for example, by heuristically pushing down selections through joins. Selecting
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among different equivalent expressions (query optimization), although an important problem, is
outside the scope of this paper due to space restrictions. We denote conditions as follows: p has
only precise, p̃ has only similarity-based, and p̃ has both, similarity-based and precise predicates
and/or operators; p denotes any of the above three variations.

Projection. Projection is involved with many operators, specially to reduce the size of tuples and
thus query processing time. A useful rule that only involves projection is: πA(πB(RS)) =
πB(πA(RS)) = πA∩B(RS).

Selection. The select operator follows many of the conventional equivalences for precise only con-
ditions, e.g., σp(σq(RS)) = σq(σp(RS)) = σp∧q(RS), and σp∨q(RS) = σp(RS) ∪ σq(RS), are
valid for both precise and similarity-based conditions. Similarity-based conditions however
invalidate some equivalences and offer opportunities for others. Given the interpretations of
similarity-based operators, the σ̂ operator must be used to push selections: σp ∼∧ q(RS) =
σ̂p ∼∧ q(σp(RS)) = σ̂p ∼∧ q(σq(RS)) (E1), and σp ∼∨ q(RS) = σ̂p ∼∨ q(σp(RS)) = σ̂p ∼∨ q(σq(RS)) (E2).
Pushed subexpressions partially pre-rank input to the σ̂ operator.

Join. The join operator is traditionally one of the most costly and common operators, and thus one
for which equivalences are quite important. Pushing selections into a join is a common equiv-
alence which holds under our model as long as precise conjunction is used: σp∧q(RS1 ./o

RS2) = σp(RS1) ./o σq(RS2) if p involves RS1 only, and q RS2 only. Similarly, join
is associative for precise conditions, but may not be for conditions involving similarity:
(RS1 ./p RS2) ./q RS3 = RS1 ./p (RS2 ./q RS3). If the operators involved are not precise,
then the .̂/ operator must be used; if p involves only RS1 and q involves RS2 and o is a join
condition: σep ∼∧ eq ∼∧ eo(RS1 ./ RS2) = σep(RS1).̂/(ep ∼∧ eq ∼∧ eo)σeq(RSs) 6= σep ∼∧ eq(RS1 ./eo
RS2) = σep(RS1).̂/(ep ∼∧ eq)∧eoσeq(RSs). Notice that σep and σeq are pre-computed and ranked for
the join, and that conditions with similarity operators may prevent clean separation and mi-
gration of a join subexpression from a selection to a join. A rather trivial equivalence is RS =
(RS as X) ./∀a∈schema(RS)−{score},X.a=Y.a (RS as Y ) which says that a ranked set is equivalent
to joining with itself (after properly adjusting the schema). This seems of limited applicabil-
ity, but is useful in other equivalences (combining with (E1) and (E2) above): σp ∼∧ q(RS) =
(σp(RS) as X).̂/(p ∼∧ q)∧(∀a∈schema(RS)−{score,attributes(p,q)},X.a=Y.a)(σq(RS) as Y ), and σp ∼∨ q(RS) =
(σp(RS) as X).̂/(p ∼∨ q)∧(∀a∈schema(RS)−{score,attributes(p,q)},X.a=Y.a)(σq(RS) as Y ) for conjunc-
tion and disjunction respectively. These equivalences embody Fagins work on rank merg-
ing [46] where different sources (here σp, σq) produce different rankings for the same objects
(tuples) which are then merged.4 Incremental algorithms for fuzzy and probabilistic inter-
pretations of the similarity operators appear in [115] and are easily extended to an ad-hoc
weighted summation interpretation.

4To exactly model [46], the topn operator also discussed in this section is applied to this result to limit the answers.
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Figure 3.3: Equivalent Expressions for an Image Retrieval Condition

Top-n. The topn operator interacts with other operators to limit the output of tuples. As long
as there are no duplicates, project and top commute as: πa(topn(RS)) = topn(πA(RS)), if
duplicates are possible in the projection, then πa(topn(RS)) ⊆ topn(πA(RS)). Top also affects
selection in the following way: σp(topn(RS)) ⊆ topn(σp(RS)). Top distributes over union as:
topn(RS1 ∪ RS2) ⊆ topn(RS1) ∪ topn(RS2), which by adding another top operator becomes
topn(RS1 ∪RS2) = topn(topn(RS1)∪ topn(RS2)). A similar transformation for the difference
operator is: topn(RS1 −RS2) = topn(topn+|RS2|(RS1)−RS2).

Example 3.3.10 (Alternative Image Retrieval Conditions) Using our multimedia example
(example 1.0.1), ˜color = (color ∼= (c1, c2)), and ˜texture = (texture ∼= (t1)) rank images on
color and texture similarity. A query can be done as a selection σ gcolor ∼∧ gtexture

(RS) that can be
supported by a sequential scan. It is also possible to push either the color or texture subexpressions
into another selection, perhaps to take advantage of available indices: σ̂ gcolor ∼∧ gtexture

(σ gcolor
(RS))

= σ̂ gcolor ∼∧ gtexture
(σ gtexture(RS)). If there are indices on both features, we may independently use the

indices for ˜color and ˜texture followed by merging: (σ gcolor
(RS) as X).̂/

( gcolor ∼∧ gtexture)∧X.id=Y.id
(σ gtexture(RS) as Y ).

Figure 3.3 shows these expressions graphically.

This list of equivalences and containments is by no means complete. We focussed on some rules
that affect our proposed model, while the usual rules for precise-only queries still apply.
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Chapter 4

Interpretation of Similarity
Conditions

4.1 Introduction

The similarity matching model and algebra described in the previous chapter are independent of
any particular interpretation of the predicates used for ranking. This chapter presents three possible
instances of many possible interpretations based on weighted summation, fuzzy and probabilistic
models. Thorough explorations of aggregation models can be found in [41, 47, 46, 42], here we limit
ourselves to basic interpretations and extend them with weighting capabilities to take advantage
of weights specified for similarity predicates. We extend the linear weighting approach from [47]
while maintaining its basic properties.

Query conditions can be of two types, crisp conditions which are exact matches and similarity
expressions which serve to rank the results, we also call them ranking expressions. The crisp
conditions follow the traditional Boolean model of true and false which can be represented by a
score of 1 and 0 respectively.

A ranking expression has intra-domain predicates and composite inter-domain expressions. In
this chapter, we focus on the interpretation of inter-domain, or inter-predicate expressions, that is,
similarity conjunctions, disjunctions and negations.

We discuss three possible interpretations of similarity score aggregation: a weighted summation
model, a fuzzy logic based model and a probabilistic model.

4.2 Weighted Summation Interpretation

One simple interpretation for combining similarity scores for a tuple is based on weighted summa-
tion. In this model, we aggregate similarity scores for conjunctions and disjunctions using weighted
Lp metrics:

Definition 4.2.1 (Lp metric) Let there be a set of weights w1, w2, ...wn, and a corresponding set
of similarity scores s1, s2, ...sn, si ∈ [0, 1]. An Lp metric is then defined as:
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Lp = p

√√√√
n∑

i=1

wi × sp
i

The familiar Euclidean distance is the L2 metric.

Based on this definition, we define the similarity operators as follows:

Definition 4.2.2 (Similarity operators) We use the Lp metric to define our similarity opera-
tors:

• ∼ and we use an Lp metric with a value of p = 1, this results in a linear combination of
weights

• ∼ or we use an Lp metric with a value of p = 2, this simulates a disjunction among the
similarity scores (see figure 5.3c)

• ∼ not: 1− s

Weights are initially attached only to predicates, to use Lp metrics in this model, we need to
convert the weights assigned to each predicate to weights for each conjunct in a conjunction and
each disjunct in a disjunction.

Definition 4.2.3 (Weight computation) Let e1, e2, ...en be similarity expressions with weights
wi for each expression. An expression can be a similarity predicate, a conjunction or a disjunction.
Let e1 ? e2 ? ...en be either a conjunction or disjunction of the expressions. For this model, we
enforce a restriction that all the weights for a conjunction or disjunction add up to one, that is
w′i = wiPn

i=1 wi
. We also assign an “overall” weight for the conjunction or disjunction by adding

all the original weights:
∑n

i=1 wi. This becomes the weight for the expression and is used as the
expression’s weight if this expression is part of another expression.

Example 4.2.1 (Weight computation) Let the ranking condition for a query be:

(p1[1] ∼ and p2[5] ∼ and p3[2]) ∼ or (p4[3]) ∼ or (p5[3] ∼ and p6[1])

There are three disjuncts overall: (p1[1] ∼ and p2[5] ∼ and p3[2]), p4[3], and (p5[3] ∼ and p6[1]).
The first disjunct is a conjunction of three predicates, with p2 being more important than p1 and
p3. We convert this conjunction to: (p1[18 ] ∼ and p2[58 ] ∼ and p3[28 ]), and an overall weight of
1 + 5 + 2 = 8. The second and third disjuncts are also converted and result in:

overall weight
p1[0.125] ∼ and p2[0.625] ∼ and p3[0.25] 0.533
p4[1] 0.2
p5[0.75] ∼ and p6[0.25] 0.2667
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Example 4.2.2 (Tuple score computation) We use the sample ranking condition of exam-
ple 4.2.1. Assume for a given tuple t the similarity scores for each similarity predicate are:
p1 = 0.8, p2 = 0.7, p3 = 0.6, p4 = 0.5, p5 = 0.9, and p6 = 1.0. Using the weights computed in
example 4.2.1 we compute the overall similarity score for the tuple as follows:
(0.533× (0.125× 0.8+0.625× 0.7+0.25× 0.6)−2 +0.2× (1× 0.5)−2 +0.2667× (0.75× 0.9+0.25×
1.0)−2)−1/2 = 0.668

The overall tuple score is then 0.668.

We combine weighted summation with crisp predicates in the same way but use min and max
as described in chapter 3; crisp predicates always have a score of 0 or 1, and there are no weights
involved.

Example 4.2.3 (Crisp and similarity tuple evaluation) Assume the following condition in a
query, where ci stands for a crisp predicate while pi stands for a similarity predicate:

p1[1] ∼ and p2[3] and c1 or p3[1] and c2

If spi and sci denote the scores of pi and ci respectively, the overall score for a tuple is computed
as: max [min {(0.25× sp1 + 0.75× sp2), sci} , min {1.0× sp3 , sc2}]

4.3 Fuzzy Interpretation

Fuzzy logic [170] has been successfully used for many applications. Under this interpretation, we
interpret the similarity score resulting from matching a tuple with a similarity predicate as the
degree of membership of the tuple to a fuzzy set formed by the similarity predicate. We then use
fuzzy logic to combine the scores of multiple predicates into an overall score for the tuple. We
aggregate similarity scores for conjunctions and disjunctions using weighted variations of min and
max. We first discuss how we perform the matching and then how we derive the weights from the
base predicates.

Definition 4.3.1 (Similarity operators) Let there be a set of weights w1, w2, ...wn, and a cor-
responding set of similarity scores s1, s2, ...sn, si ∈ [0, 1] for a conjunction, disjunction or negation.
We define the operators as:

• ∼ and: minn
i=1 s

1
wi
i

• ∼ or: maxn
i=1 s

1
wi
i

• ∼ not: 1− s
1
w
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Figure 4.1: Various Sample Similarity Weightings

The motivation for using an exponent of 1
weight for similarity scores is to ensure a smooth mapping

for scores from [0, 1] → [0, 1], and to preserve the meaning that higher weights boost similarity
scores more than lower weights. Figure 4.1 shows graphically how the weighting affects scores.

Weights are initially attached only to predicates, to use this approach, we must convert the
weights assigned to each predicate to weights for each conjunct in a conjunction and each disjunct
in a disjunction.

Definition 4.3.2 (Weight computation) Let e1, e2, ...en be similarity expressions with weights
wi for each expression. An expression can be a similarity predicate, a conjunction or a disjunction.
Let e1 ? e2 ? ...en be either a conjunction or disjunction of all the expressions. We enforce a
restriction that all the weights for a conjunction or disjunction average one, that is w′i = wi×nPn

i=1 wi
.

The motivation for weights to average 1 is that this represents the identity, i.e., no change in the
similarity score. We also assign an “overall” weight for the conjunction or disjunction by adding
all the original weights:

∑n
i=1 wi. This becomes the weight for the expression and is used in the

same manner if this expression is part of another expression.

Example 4.3.1 (Weight computation) Let the ranking condition for a query be:

(p1[1] ∼ and p2[5] ∼ and p3[2]) ∼ or (p4[3]) ∼ or (p5[3] ∼ and p6[1])

There are three disjuncts overall: (p1[1] ∼ and p2[5] ∼ and p3[2]), p4[3], and (p5[3] ∼ and p6[1]).
The first disjunct is a conjunction of three predicates, with p2 being more important than p1 and
p3. We convert this conjunction to: (p1[1×3

8 ] ∼ and p2[5×3
8 ] ∼ and p3[2×3

8 ]), and an overall weight
of 1 + 5 + 2 = 8. The second and third disjuncts are also converted and result in:
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overall weight
p1[0.375] ∼ and p2[1.875] ∼ and p3[0.75] 1.6
p4[1] 0.6
p5[1.5] ∼ and p6[0.5] 0.8

Example 4.3.2 (Tuple score computation) We use the sample ranking condition of exam-
ple 4.3.1. Assume for a given tuple t the similarity scores for each similarity predicate are:
p1 = 0.8, p2 = 0.7, p3 = 0.6, p4 = 0.5, p5 = 0.9, and p6 = 1.0. Using the weights computed in
example 4.3.1 we compute the overall similarity score for the tuple as follows:
max(min(0.80.375, 0.71.875, 0.60.75)1.6, 0.50.6,min(0.91.5, 1.00.5)0.8) = 0.8812

The overall tuple score is then 0.8812.

We combine the fuzzy interpretation with crisp predicates in the same way as described for the
weighted summation model and use min and max as described in chapter 3; crisp predicates always
have a score of 0 or 1, and there are no weights involved.

Example 4.3.3 (Crisp and similarity tuple evaluation) Assume the following condition in a
query, where ci stands for a crisp predicate while pi stands for a similarity predicate:

p1[1] ∼ and p2[3] and c1 or p3[1] and c2

If spi and sci denote the scores of pi and ci respectively, the overall score for a tuple is computed
as:

max
[
min

{
min(s0.5

p1
, s1.5

p2
), sci

}
, min

{
s1.0
p3

, sc2

}]

4.4 Probabilistic Interpretation

Probability theory has a long and fruitful history which makes it a good candidate for similarity
retrieval. Under this interpretation, we interpret similarity predicate scores as the probability that
a given attribute value matches the query value(s). This interpretation is natural since similarity
scores and probabilities are always in the range [0,1] and there is a positive association between
them – higher values indicate better matches. When calculating or combining probabilities, one
of the most complex issues is that of dependence or independence among different elements. In
our scenario, this amounts to determining when two similarity predicates over a tuple are or not
dependent. Since similarity predicates are user defined, it is not possible in general to determine
whether they are or not dependent. Therefore we assume that all the similarity predicates involved
in a query are independent. This also reduces the complexity of the calculations. In this model,
we aggregate similarity scores for conjunctions and disjunctions using weighted variations of the
common probabilistic conjunction, disjunction and negation formulas. We first discuss how we
perform the matching and then how we derive the weights from the base predicates.
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Definition 4.4.1 (Similarity operators) Let there be a set of weights w1, w2, ...wn, and a cor-
responding set of similarity scores s1, s2, ...sn, si ∈ [0, 1] for a conjunction, disjunction or negation.
We define the operators as:

• ∼ and:
∏n

i=1 s
1

wi
i

• ∼ or:
∑

1≤i≤n
s

1
wi
i − ∑

1≤i<j≤n
(s

1
wi
i × s

1
wj

j ) +
∑

1≤i<j<k≤n

(s
1

wi
i × s

1
wj

j × s
1

wk
k ) − ... + (−1)n−1

n∏
i=1

s
1

wi
i ,

this is the well known mutual inclusion–exclusion formula [126]

• ∼ not: 1− s
1
w

Note that the inclusion–exclusion formula used for disjunction is of limited practical [126] use as
its complexity grows too rapidly as the number of predicates increases.

The motivation for using an exponent of 1
weight for similarity scores is to ensure a smooth

mapping for scores from [0, 1] → [0, 1], and to preserve the meaning that higher weights boost
similarity scores more than lower weights. Figure 4.1 shows graphically how the weighting affects
scores.

We use the same approach used in the fuzzy model (see section 4.3) to convert the weights
attached to similarity predicates for use with our probabilistic model. We also combine the prob-
abilistic interpretation of similarity expressions with crisp predicates in the same way as the fuzzy
model.

4.5 Evaluation

We conducted extensive experiments of varied datasets to measure the performance of the retrieval
models and query processing algorithms developed. This section presents the results of our experi-
ments. First we briefly describe the parameters used to measure retrieval performance followed by
a description of the data sets. Finally, we present the results along with our observations.

4.5.1 Methodology

Text retrieval systems typically use the following two metrics to measure the retrieval performance:
precision and recall [137, 20]. Note that these metrics measure the retrieval performance as opposed
to execution performance (retrieval speed).

Precision and recall are based on the notion that for each query, the collection can be partitioned
into two subsets of documents. One subset is the set of relevant documents and is based on the
user’s criteria for relevance to the query. The second is the set of documents actually returned by
the system as the result of the query. Now precision and recall can be defined as follows:
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Precision is the ratio of the number of relevant images retrieved to the total number of images
retrieved. Perfect precision (100%) means that all retrieved images are relevant.

precision =
|relevant

⋂
retrieved|

|retrieved| (4.1)

Recall is the ratio of the number of relevant images retrieved to the total number of relevant
images. Perfect recall (100%) can be obtained by retrieving the entire collection, but the
precision will be poor.

recall =
|relevant

⋂
retrieved|

|relevant| (4.2)

An IR system can be characterized in terms of performance by constructing a precision–recall
graph for each query by incrementally increasing the size of the retrieved set, i.e., by measuring
the precision at different recall points. Usually, the larger the retrieved set, the higher the recall
and the lower the precision. This is easily done in MARS since the query processing algorithms are
implemented as a pipeline.

4.5.2 Data Sets

We have conducted experiments on two datasets. The first dataset is a collection of images of
ancient artifacts from the Fowler Museum of Cultural History. We used a total of 286 images of such
artifacts. The relevance judgments for this collection were obtained from a class project in Library
and Information Science department at the University of Illinois. Experts in librarianship consulted
with the curator of the collection to determine appropriate queries and their answers. Queries posed
to this collection range from simple single feature queries to complicated queries involving all the
operators described above and both retrieval models, namely fuzzy and probabilistic. In all, five
groups of related images were chosen. For each group several queries involving single features and
arbitrary operations between them as well as different weightings were constructed. These relevant
query groups ranged in their cardinality from 9 to 33 images.

The second dataset is the Corel image collection dataset available from the UCI KDD repository.
This collection contains around 70,000 images mostly of natural scenes. All images are cataloged
into broad categories and each image carries an associated description. In this case, manually
separating the collection into relevant and nonrelevant sets was infeasible due to the size. Instead
we made use of our results in [113] to automatically determine the appropriate result set of each
query. The dataset includes multidimensional image feature vectors for color histogram and texture
data. We describe these features and their associated similarity predicates in appendix A.
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4.5.3 Results

4.5.3.1 Fowler Collection

In this section, we describe the results of some experiments performed on the image collection from
the Fowler Museum. Since the complete set of experiments are too large to include, we present
only the results of certain representative experiments.

Figure 4.2(a) shows a complex query (shape(Ii) and color(Ii) or shape(Ij) and layout(Ij) query)
with different weightings. The three weightings fared quite similar, which suggests that complex
weighings may not have a significant effect on retrieval performance.

We conducted experiments to verify the role of feature weighting in retrieval. Figure 4.2(b)
shows results of a shape or color query, i.e., to retrieve all images having either the same shape or
the same color as the query image. We obtained four different precision recall curves by varying
the feature weights. The retrieval performance improves when the shape feature receives more
emphasis.

We also conducted experiments to observe the impact of the retrieval model used to evaluate
the queries. We observed that the weighted summation, fuzzy and probabilistic interpretations of
the same query yields different results. Figure 4.2(c) shows the performance of the same query
(a texture or color query) in the two models. We used the same query but with a conjunction to
compare the performance of the retrieval models. The result is shown in Figure 4.2(d).

4.5.3.2 Corel Collection

For the Corel dataset, figure 4.3a) shows a query involving two database objects ranked under
both fuzzy and probabilistic models. In this query, all terms are positive literals. Although at first
the fuzzy model has good performance, the probabilistic model soon improves and stays better.
Figure 4.3b) shows a query involving a negation. In this case the fuzzy model performed well below
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the probabilistic model. The next section discusses possible explanations.

4.5.4 Analysis of Data

Note the graphs shown are not always monotonic. The precision is expected to monotonically
decrease as more and more images are retrieved. The small peaks in the graphs imply that a
sequence of relevant images was quickly retrieved following a possibly long sequence of nonrelevant
images. Taking averages over several queries would help in smoothing out these peaks. However,
we do not take averages to depict the peculiar effects of individual queries. The way to read these
graphs is that a higher curve is better than a lower one. This would mean that at all recall points,
the precision was better.

We observe from Figure 4.2(b) that the weighting of features can improve performance dra-
matically. The weights for the queries were determined subjectively and several combinations were
tried. We also observed (from Figure 4.2(a)) that complex weighting strategies may not always
improve performance significantly.

We observed that the probabilistic model is superior to the fuzzy model for Corel queries. A
possible explanation for this (specially for figure 4.3(b)) is that the min and max operations used
in the fuzzy model are too restrictive. They take into account only one of all their parameters while
the probabilistic operators take into account all the parameters. These results scaled from 286 to
70,000 images. This gives us confidence in the robustness of our approach.
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Chapter 5

Similarity Query Processing

5.1 Introduction

This chapter discusses how we evaluate queries with complex Boolean similarity conditions. We
support three mechanisms for generating the ranking of queries – the first is based on a weighted
summation interpretation, the second is based on a fuzzy interpretation of similarity and the third
is based on a probabilistic interpretation (see chapter 4).

In the discussion below, we will use the following notation. Attributes of tables are denoted
by a1, a2, . . . , am, and query values are denoted by v1, v2, . . . , vt. During query evaluation, each
similarity predicate pi = aj ∼= vk is used to rank tuples in the table based on similarity. Thus, the
predicate pi = aj ∼= vk can be thought of being a list of tuples ranked based on the similarity of vk

to all instances of aj . A similarity expression e is either a single similarity predicate, or other sim-
ilarity expressions combined with Boolean operators. We view a query condition C(p1, p2, . . . , pn)
over similarity predicates pi as a tree whose leaves correspond to similarity predicates, and internal
nodes correspond to similarity Boolean operators, therefore, subtrees represent similarity expres-
sions. Specifically, non–leaf nodes are of one of three forms: ∧(e1, e2, . . . , en), a positive conjunction
of similarity expressions; ∧(e1, e2, . . . , er,¬er+1 . . . ,¬en), a conjunction consisting of both positive
and negative similarity expressions; and ∨(e1, e2, . . . , en), which is a disjunction of positive sim-
ilarity expressions. Notice that we do not consider an unguarded negation or a negation in the
disjunction (that is, r ≥ 1), since it does not make much sense. Typically, a very large number
of entries will satisfy a negation query virtually producing the universe of the collection [14]. We
therefore allow negation only when it appears within a conjunctive query to rank an entry on the
positive feature discriminated by the negated feature. The following is an example of a similarity
Boolean query condition: C(p1, p2) = (a1 ∼= v1) ∧ (a2 ∼= v2) is a conjunction of two similarity
predicates. Thus, the condition represents the desire to retrieve tuples whose attribute a1 matches
the value v1 and its attribute a2 matches the value v2. Figure 5.1 shows an example query condition
C(p1, p2, p3, p4) = ((a1 ∼= v1) ∧ (a2 = v2)) ∨ ((a3 = v3) ∧ ¬(a4 = v4)) in its tree representation.
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Figure 5.1: Sample Query Tree

5.1.1 Finding the Best N Matches

While our retrieval model provides a mechanism for computing a similarity of match for all tuples
given a query, for the approach to be useful, techniques must be developed to retrieve the best N

matches efficiently without having to rank each tuple. Such a technique consists of two steps:

• retrieve tuples in rank order based on each similarity predicate

• combine the results for single predicates to generate an overall result for the entire query

The first step is discussed in section 5.1.2. The second step is elaborated in section 5.1.3 for
the background and in sections 5.2 for the weighted summation model, 5.3 for the fuzzy model,
and 5.4 for the probabilistic model.

To merge the ranked lists, a query condition C(p1, p2, . . . , pn) viewed as a tree is evaluated as
a pipeline from the leaves to the root. Each node in the tree exposes to its parent a ranked list of
tuples, with the ranking based on the similarity score. We say it exposes, because the key point
is that each node produces the next best result strictly on demand. The algorithms to form the
node’s result depend upon the retrieval model used.

5.1.2 Predicate Evaluation

Predicates in the query condition usually correspond to a selection operation on a single attribute.
For example, in figure 5.1, the leaf nodes correspond to selection operations based on the predicates
a1 ∼= v1, a2 ∼= v2, a3 ∼= v3 and a4 ∼= v4, where ai is an attribute in table, and vi is its
corresponding query value. This selection corresponds to ranking the table on the similarity between
values in the column of attribute a and the query value v. A single–predicate selection operation
iteratively returns the tuple whose corresponding value next best matches the given query value
v. A simple way to implement the selection operation is a sequential file scan over the table
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followed by sorting. However, the I/O cost of the sequential scan operation increases linearly
with the size of the table and hence may be expensive for large databases. The efficiency of the
predicate evaluation can be improved by using appropriate indexing mechanisms that support
nearest neighbor search. MARS has focussed on multidimensional vectors that can represent image
features, therefore we focus on multidimensional indexing techniques. Several indexing mechanisms
suited for multidimensional vectors or features have been proposed (e.g., Hybrid tree [25], R-
trees [66], R+-trees [141], R*-trees [12], k-d-B-trees [129], hB-trees [44], TV-trees [95], SS-trees [167],
vp-trees [164], M-trees [35].) Any such indexing mechanism can be used for indexing the vectors.
These indices support efficient “nearest–neighbor” traversal to quickly generate the best matches
in rank order given a query vector. In chapter 8 we revisit the nearest neighbor problem in the
context of query refinement.

While we have discussed predicates as selections, they can also represent similarity join op-
erations when a predicate pi is of the form pi = aj ∼= ak, that is, it involves two attributes
usually from two different tables. This does not affect the problem at hand since the ranked list
generated from a join predicate simply is over tuples that originate from two tables. The resulting
ranked list has the same form as that of a similarity selection predicate and can readily be used
with our algorithms. Similarity join algorithms that can generate such a list have been studied
elsewhere [17, 87, 4, 117, 5, 146, 142, 69, 3, 104]. Of particular interest is the algorithm presented
in [69] which is incremental. In chapter 8 we revisit this problem in the context of query refinement.

In this chapter, we concentrate on developing techniques for evaluating Boolean expressions over
similarity predicates (for selection and join predicates), and assume the presence of a mechanism
to provide efficient support for nearest neighbor search and join over multidimensional data and
hence ranked retrieval at the predicate level.

5.1.3 Background on Evaluation Algorithms

This section defines some background concepts we use in the following sections. As described in
chapter 3, a query produces a ranked list of tuples based on the similarity score of each tuple t to
the query condition. Our evaluation model is as follows:

• Each node N in the condition tree returns a list of ρi = 〈t.tid, scorei
QN

(t)〉 to its parent where:

– i = 1, 2, . . . , n is the sequence number in which the ρ’s are returned and n is the number
of tuples

– QN is the query condition subtree rooted at node N

– scorei
QN

(t) is the similarity value of tuple t to the sub-query rooted at QN

– for any two ρi = 〈t.tid, scorei
QN

(t)〉, and ρk = 〈t′.tid, scorek
QN

(t′)〉 if i < k then scorei
QN

(t) ≥
scorek

QN
(t′) holds; that is, any ρ returned as an answer for the sub-query QN will have

higher similarity than any pair returned later for the same sub-query, so ρ’s are returned
in sorted order by similarity
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• Evaluation of an expression rooted at a node QN produces a sequence of ρ’s. A cursor is
maintained in this sequence to support the concept of current element; this sequence with
cursor is called a stream.

• The notion of best element of a stream at any point is defined as the next ρ = 〈t.tid, scoreQN
(t)〉

that can be obtained from a stream satisfying the above criteria.

• A stream of ρ’s supports the following operations:

– PeekNext (or just Peek) that returns the best element of the stream without removing
it from the stream

– GetNext that returns the best element of the stream and removes it from the stream

– Probe(t.tid, QN ) that performs random access to tuple t and returns a ρ = 〈t.tid, scoreQN
(t)〉,

that is, the tuple id and similarity pair corresponding to tuple t based on the expres-
sion rooted at node QN ; not all operators require this support, we define it for all as a
convenience

• The weights are not necessarily incorporated into the algorithms: the similarity scores are
adjusted to reflect the weight when tuples are returned to the parent node. Since all weights
are monotonic transformations, this does not alter the sequence of the results.

The algorithms presented in the following sections assume binary operators. n-ary operators
can be implemented by either nesting binary operators (using the associativity property) or ex-
tending the algorithms to cope with n input streams. Extension of binary to n-ary operators is
straightforward in all cases.

Given that the operators discussed are binary, and the inputs are streams as defined above,
we can create a two dimensional representation where each axis corresponds to similarity values
from one stream. Figure 5.2 depicts such a scenario. In this figure, the horizontal axis corresponds
to stream A and the vertical axis to stream B. Points on this graph correspond to tuples whose
similarity in stream A defines its A-axis coordinate and the similarity in B defines its B-axis
coordinate. For instance, the point shown corresponds to tuple t with similarity values a′ and b′ in
the respective streams.

Since streams are traversed in rank order of similarity, we obtain coordinates in sorted order
from each stream. In the figure, a and b show the current similarity values of the best element
currently in the streams (the cursor contents). Since all tuples from stream A with similarity values
in the range [a,1] and all from stream B with similarity values in the range [b,1] have been read
already, we can construct a rectangle bounded by the points (a,b) and (1,1) such that for all tuples
in the rectangle, the similarity values corresponding to both streams have been observed. We refer
to this rectangle as the Observed Area Bounded Box (OABB). Another interpretation of OABB is
that it is the current intersection of the tuples observed so far in both streams. Projecting OABB
onto the A axis yields another rectangle (called πA) that contains only tuples whose A coordinate
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is known, but its b coordinate is unknown; OABB and πA do not overlap. The same is true for
the projection of OABB onto the B axis (the rectangle is called πB). πA ∪ πB denotes the tuples
of which we have partial knowledge of their location in this 2-d space (i.e. exactly one co-ordinate
known). Thus any tuple of which we have complete knowledge (both similarity values seen) must
lie in OABB.

The following sections make use of these definitions to explain the functioning of the algorithms.

5.2 Weighted Summation Model Evaluation Algorithms

In this section we present the algorithms to evaluate similarity expressions for the weighted summa-
tion retrieval model presented in section 4.2. For simplicity we restrict ourselves to compute only
binary nodes. That is, we assume that the query node Q has exactly two children, A, and B. We
develop algorithms only for the following three cases: Q = A∧B, Q = A∧¬B and Q = A∨B. As
described in section 5.1, we only develop algorithms for positive conjunctive, negated conjunctive
queries with a positive term and disjunctive queries.

In describing the algorithms we use the following notation:

• A tuple t is represented by a pair of components 〈t.tid, scoreQ(t)〉, composed by the key (t.tid)
which identifies the tuple id, and the score which identifies the tuple’s similarity to the query
expression (t.score).

• A and B are assumed to be streams as defined in section 5.1.3.

• Associated with each query expression Q are three sets Sa, Sb and Sres. Initially each of these
sets are empty. The query expression Q extracts tuples from the child streams (that is, A

and B) and may buffer them into Sa and Sb (these represent the πA and πB rectangles from

48



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t1t2

t3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t1t2

t3

t4

a) Weighted summation b) Weighted summation c) Weighted summation
and operator and not operator or operator

Figure 5.3: Contour Graphs for Weighted Summation Operators– Whiter is Higher, Darker is Lower
Similarity Value

figure 5.2 respectively). The set Sres acts as a buffer of the tuples for the query expression Q.
Once a query expression Q establishes the similarity score of tuple t for Q (that is, scoreQ(t)),
it places t in Sres(the result set.) Thus, t.score refers to the similarity between tuple t and
the query expression Q.

The following three sections describe the algorithms used to implement the above shown oper-
ations in an efficient manner. For clarity purposes, when describing the algorithms below we omit
some critical error and boundary checking which needs to be considered in any implementation.

5.2.1 Conjunctive Query with Positive Subqueries

The algorithm in figure 5.4 computes the set of tuples ranked on their similarity score to the query
Q = A∧B, given input streams A and B which are ranked based on their similarity score of tuples
to A and B.

The operation performed in a binary operator node can be viewed as a function S(x ∈ [0, 1], y ∈
[0, 1]) → [0, 1]. As an aid to explain the algorithm, we use contour plots that show the value of
S(x, y). These plots depict lines along which the value of S is the same over different parameters, so
called iso–similarity curves. In reality there are infinitely many such curves; the figures only show a
few. The highest values of S (degree of membership) are in the white areas, the darker the region,
the lower the value. Figure 5.3a) shows the plot that corresponds to the weighted summation and
operator.

Imagine an overlay of Figure 5.2 on top of Figure 5.3a). As we traverse the streams A and
B in similarity order, OABB grows and whole iso–similarity curves become completely contained
in the OABB. Given the geometry of the curves, we notice that for any OABB defined as the
rectangle bounded by (a, b)-(1, 1), there is a curve of minimum similarity along the line with value
c = wa×a+wb×b, where wa and wb are the corresponding weights. Tuples contained in this OABB
have been “seen”, and their final similarity score is fully determined. Among these, tuples that lie
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on any iso–similarity curve completely enclosed in the OABB can be returned safely. Conversely,
tuples in the OABB that lie on iso–similarity curves that intersect the OABB must be retained
in an auxiliary set. Tuples in this auxiliary set become safe to return when the OABB covers a
sufficiently low iso–probability curve such that its score is lower or equal to that of the now safe
tuple. As an example, consider figure 5.3a). There are three tuples in the whole collection. t2

is the first to be included in an OABB since streams A and B are explored in similarity order.
When this happens, t1 is partially known in πA. Even though OABB contains only one tuple with
known final probability, it cannot yet be returned since it does not lie on an iso–probability curve
completely covered by OABB. Then t1 will be included in OABB, at this point, the OABB is large
enough to cover t1 and t2, and we return t1 as the best tuple. As the OABB grows to include t3, it
is large enough to ensure that t2’s iso–similarity curve does not intersect the OABB, so we return
t2 as the next best tuple. Finally, we return t3.

We make use figure 5.5 to explain this algorithm. The figure shows one of many iso–similarity
lines that correspond to the line wA × A + wb × B = c where c is an arbitrary constant. The
algorithm explores A and B in rank order, the next best score from A is a′ and from B is b′. We
want to find c such that the “safe” area is as large as possible and the line is completely enclosed
in the rectangle formed by (a′, b′)− (1, 1). For this to happen, the iso–similarity line must cross the
OABB at either (a′, 1) or (1, b′), we evaluate the similarity score for both of these points and set c

to the larger one. The algorithm follows this by evaluating the threshold c and if it has a tuple t in
the OABB (Saux) it checks to see if it is safe to return it. If (t.score > c) it returns t as the next
results. Otherwise, the algorithm explores A and B taking from the higher valued stream first and
trying to do a match with observations from the other stream. When a match occurs, it computes
the final score and puts the tuple in Saux. This process continues until there is a tuple that can be
returned.

5.2.2 Conjunctive Query with Negative Subquery

We next develop the algorithm for computing the query Q = A∧¬B; it is shown in figure 5.6. The
algorithm is different compared to the one developed for the conjunctive query with no negative
subquery. A strategy similar to the conjunctive query is possible if traversing the stream B in
reverse order were possible. This implies a furthest neighbor query that is not supported. We
use the positive expression to guide the search, and the negative expression to determine the final
similarity score. We use Probe to determine the similarity score for the negative expression. As
an example, tuple t1 in figure 5.3 is best if it is located early in stream A and its similarity to the
query expression that corresponds to B is very low.

This algorithm follows the safety criteria specified in the previous section, however only the
stream for A is used in computing the similarity score of tuples according to A ∧ ¬B. Tuples are
retrieved from the input stream A in rank order. For a given tuple t its similarity score with respect
to the sub-query ¬B is evaluated by performing a probe on tuple t and evaluating its similarity
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function GetNextAnd Wsum(A, B)
1 // returns: next best tuple in A and B
2 flag = TRUE
3 while (flag)
4 ta= Peek (A), tb= Peek (B)
5 c=max(wA× ta.score+wB , wA + wB× tb.score)
6 if Saux 6= ∅∧ c < MaximumScore(Saux) then
7 t= tuple from Saux with maximum score
8 Saux = Saux − t
9 flag = FALSE
10 else
11 if ta.score > tb.score then
12 ta= GetNext(A)
13 Sa= Sa∪ ta

14 if ta ∈ Sb then
15 tb= tuple from Sb equivalent to ta

16 t= ta

17 t.score = wA× ta.score + wB× tb.score
18 Sa= Sa-ta, Sb= Sb-tb, Saux = Saux ∪ t
19 end if
20 else
21 // symmetric code to then branch
22 end if
23 end if
24 end while
25 Sres= Sres∪ t
26 return t
end function

Figure 5.4: Algorithm that Implements the and Operator for the Weighted Summation Interpre-
tation
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function GetNextAnd Not Wsum(A, B)
1 // returns: next best tuple in A and not B
2 flag = TRUE
2 while (flag)
3 ta= Peek (A) // best from A
4 c = wA×ta.score+wB // best possible, unknown B
5 if Saux 6= ∅ ∧ c < MaximumScore(Saux) then
6 t= tuple from Saux with maximum score
7 Saux = Saux − t
8 flag = FALSE
9 else
10 t= GetNext(A) // Consume from A
11 tb.score = Probe(t,¬B)
12 t.score = wA×t.score +wB×tb.score
13 Saux = Saux ∪ t
14 end if
15 end while
16 Sres= Sres∪ t
17 return t
end function

Figure 5.6: Algorithm that Implements the and not Operator for the Weighted Summation Inter-
pretation

score. Once the similarity score of a tuple t according to ¬B is established, we determine its final
score according to the query expression Q, and the tuple is inserted into an auxiliary set that is
used to verify the safety criteria. A tuple is only returned if it successfully passes the safety test
t.score > c, thus every returned tuple was in the auxiliary set. Effectively, every tuple retrieved
from A results in a probe to B.

5.2.3 Disjunctive Query

Finally, to compute a disjunctive query node, we need the algorithm shown in figure 5.8. Disjunctive
queries are hard to compute in this case. Consider figure 5.3c), tuples t2, t3 and t4 have very similar
similarity scores. Notice that in general there are some iso–similarity curves that will never be
contained in any OABB (unless everything is read in). Since tuple t may have a higher similarity
score in one stream than another, we would need to store it until a possibly much worse (and much
later) match occurs from the other stream. Indeed, to return t4, both t2 and t3 need to be first
included in the OABB. Potentially, this results in a very large initial overhead (latency) to find the
first few results.

Due to the particular exponent we chose for this interpretation of disjunction we have a unique
shape for the space of this algorithm: a series of concentric circles1. We will use figure 5.7 to
explain our algorithm. Given that the contour curves are circles we observe that for any circle with
radius less than 1, we need to explore the entire inputs to give a definite answer for a tuple. For
contour lines with a radius of more than 1, this is not so. Our algorithm concentrates on growing
the “safe” area by exploring the streams A and B in rank order. We test the maximum possible
similarity score c for the current OABB against the set Saux of candidate tuples, if a tuple exists

1Note that we could have chosen higher exponents, in the limit, with an L∞ metric, we have the fuzzy interpretation
and can use that algorithm.
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with a higher score than c, we return it. Otherwise, we extract the next tuple from the stream with
a higher top score and try to find a match in our cache of the other stream. If there is a match, we
compute the final similarity score for the tuple and place it in Saux.

The performance of this algorithm will degrade if we request many answers and the result score
drops below 1 since, as observed above, this requires examining the entire inputs. We can modify
this algorithm to offer optimistic guesses when the performance drops significantly. We describe
how this can be done in our approach for the probabilistic disjunction which suffers from the same
problems and the weighted summation disjunction.

5.3 Fuzzy Model Evaluation Algorithms

In this section, we present the algorithms to compute similarity expressions using the fuzzy in-
terpretation presented in section 4.3. For simplicity we restrict ourselves to compute only binary
nodes. That is, we assume that the query expression Q has exactly two children, A, and B. Algo-
rithms are presented for the following three cases: Q = A ∧ B, Q = A ∧ ¬B and Q = A ∨ B. As
described in section 5.1, we only develop algorithms for positive conjunctive, negated conjunctive
queries with a positive term and disjunctive queries.

In describing the algorithms we use the following notation:

• A tuple t is represented by a pair of components 〈t.tid, score(t)〉, denoted by the tuple id
(t.tid) and the degree of membership (t.score). The key identifies the tuple id and the degree
of membership describes the similarity of match between the query feature and the database
entries.

• A and B are assumed to be streams as defined in section 5.1.3.
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function GetNextOr Wsum(A, B)
1 // returns: next best tuple in A or B
2 flag = TRUE
3 while (flag)
4 ta = Peek(A), tb = Peek(B)

5 c = max(
p

wA × a′2 + wB ,
p

wA + wB × b′2)
6 if Saux 6= ∅ ∧ c < MaximumScore(Saux) then
7 t = tuple from Saux with maximum score
8 Saux = Saux − t
9 flag = FALSE
10 else
11 if ta.score > tb.score then
12 ta= GetNext(A) // remove best tuple from A
13 Sa= Sa∪ ta

15 if ta ∈ Sb then
16 tb= tuple from Sb equivalent to ta

17 t= ta

18 t.score = wA× ta.score + wB× tb.score
19 Sa= Sa-ta, Sb= Sb-tb, Saux = Saux ∪ t
20 end if
21 else
22 // symmetric code to then branch
23 end if
24 end if
25 end while
26 Sres= Sres∪ t
27 return t
end function

Figure 5.8: Algorithm that Implements the or Operator for the Weighted Summation Interpretation

• Associated with each query expression Q are three sets Sa, Sb and Sres. Initially each of
these sets are empty. The algorithm extracts tuples from the streams (that is, A and B) and
may buffer them into Sa and Sb (these represent the πA and πB rectangles from figure 5.2
respectively). The set Sres acts as a buffer of the tuples for the query expression Q. Once
a query expression Q is able to establish the degree of membership of tuple t for Q (that is,
degreeQ(t)), it places t in Sres(the result set.) Thus, t.score refers to the degree of membership
of t according to Q, where t ∈ Sres.

The following three sections describe the algorithms. For clarity purposes, when describing the
algorithms we omit some critical error and boundary checking which needs to be considered in an
implementation.

5.3.1 Conjunctive Query with Positive Subqueries

The algorithm shown in Figure 5.10 computes the list of tuples ranked on their degree of membership
to the query expression Q = A ∧ B, given input streams A and B which are ranked based on the
degree of membership of tuples in A and B.

The operation performed in a binary operator node can be viewed as a function S(x ∈ [0, 1], y ∈
[0, 1]) → [0, 1]. As an aid to explain the algorithm, we use contour plots that show the value of
S(x, y). These plots depict lines along which the value of S is the same over different parameters,
so called iso–similarity curves. In reality there are infinitely many such curves; the figures only
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show a few. The highest values of S (degree of membership) are in the white areas, the darker the
region, the lower the value. Figure 5.9a) shows the plot that corresponds to the fuzzy and operator.

Imagine an overlay of Figure 5.2 on top of Figure 5.9(a). As OABB grows, whole iso–similarity
curves are completely contained in OABB. Given the geometry of the curves, we notice that for
any OABB defined as the rectangle bounded by (a, b)-(1, 1), there is a curve of minimum similarity
along the square (c, c)-(1, 1) where c = max(a, b). Tuples contained in this square are completely
determined and are safe to be returned as answers. As an example, t1 is contained in the first
such square to appear. This is indeed the best tuple. Discriminating between t2 and t3 is more
difficult. They both yield similar degrees of membership. Once the OABB has grown to contain
both tuples, a decision as to the ranking is done. t4 does not participate in this process since t2 and
t3 are definitely better than t4. The algorithm relies on this fact, but grows the OABB by exactly
one tuple at a time, thus the next lower iso–similarity curve is exposed and the latest tuple to join
OABB is the next answer. At each stage, the best tuple out of the sources A and B is chosen and
added to sets Sa (πA) and Sb (πB) which function as buffers of tuples already observed from the
corresponding stream. When a tuple is found that was already observed in the other stream, the
loop terminates and this is the next best tuple according to the query expression Q (it just joined
the rectangle OABB, thus encompassing the next iso–similarity curve that has an tuple). Notice
that | Sa ∪ Sb | will never exceed the size of the feature collection. The resulting tuple is returned
with the degree equal to the minimum degree of the tuple in both streams and lastly recorded in
the result set.
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function GetNextAnd Fuzzy(A, B)
1 returns: next best tuple in A and B
2 while (TRUE)
3 ta= Peek (A), tb= Peek (B)
4 if ta.score > tb.score then
5 ta= GetNext(A)
6 Sa = Sa ∪ ta

7 if ta.tid ε Sb then // tuple already seen in B
8 tb= tuple Sb[ta.tid]
9 exit loop
10 end if
11 else
12 if tb.score > ta.score then
13 tb= GetNext(B)
14 Sb = Sb ∪ tb

15 if tb.tid ε Sa then // tuple already seen in A
16 ta= tuple Sa[tb.tid]
17 exit loop
18 end if
19 end if
20 end if
21 end while
22 // reached upon finding a common tuple in Sa and Sb

23 t.tid = ta.tid
24 t.score = min(ta.score, tb.score)
25 Sa = Sa − ta, Sb = Sb − tb, Sres = Sres ∪ t
26 return t
end function

Figure 5.10: Algorithm Returning the Next Best for the Fuzzy and Interpretation

5.3.2 Conjunctive Query with Negative Subquery

We next present the algorithm for computing the query Q = A∧¬B; it is presented in Figure 5.11.
Figure 5.9b) shows the contour plot that corresponds to this query. A strategy similar to the
previous section could be used if traversing the stream B in reverse order was possible. This implies
a furthest neighbor query that is not supported. The positive term is used to guide the search and
the negative sub-query used to determine the final degree of membership. The OABB thus only
considers entries from stream A and never grows in the B stream (which is never constructed).
Probe is then used to complete the degree of membership of an tuple. As an example, tuple t1 is
best if it is located early in stream A and its similarity to the query feature that corresponds to B

is very low.
This algorithm contains an auxiliary set Saux to hold tuples retrieved from stream A and whose

final degree of membership is established, but resulted lower than the membership degree in A.
These tuples need to be delayed until such time that it is safe to return them. For each iteration
of the loop, there are three possibilities:

• Saux 6= Ø ∧ Peek(A).score ≤ MaximumDegree(Saux) the best tuple in the auxiliary set has
higher membership degree than than the top tuple from A. In this case, the result is clear
(return top tuple form Saux), since min is used, no better tuple will come from A.

• (Saux = Ø∨Peek(A).score > MaximumDegree(Saux))∧Peek(A).score ≤ Probe(Peek(A).tid,¬B).score
there is no better candidate on hold and the degree of the best tuple from A is lower (and
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function GetNextAnd Not Fuzzy(A, B)
1 // returns: next best tuple in A and not B
2 while (TRUE)
3 ta= Peek (A)
4 if Saux 6= Ø ∧ ta.score < MaximumDegree(Saux) then
5 t = tuple from Saux with maximum degree
6 Saux = Saux − t
7 exit loop
8 else
9 ta= GetNext(A) // consume from A
10 tb.tid = ta.tid
11 tb.score = Probe(ta, ¬B)
12 if ta.score ≤ tb.score then
13 t = ta

14 exit loop
15 else
16 Saux = Saux ∪ tb

17 end if
18 end if
19 end while
20 Sres = Sres ∪ t
21 return t
end function

Figure 5.11: Algorithm Returning the Next Best for the Fuzzy and not Interpretation

thus determines the answer) than the probe on the negative sub-query. The answer is the
best tuple from A.

• (Saux = Ø∨Peek(A).score > MaximumDegree(Saux))∧Peek(A).score > Probe(Peek(A).tid,¬B).score
there is no better candidate on hold and the degree of the best tuple from A is higher than the
probe on the negative sub-query. The final membership degree is determined by the probe
and the tuple is sent to the auxiliary set to wait until it is safe to return it.

The loop iterates until a result is found.

5.3.3 Disjunctive Query

The algorithm shown in Figure 5.12 computes the set of tuples ranked on their degree of membership
to the query Q = A ∨ B, given input streams A and B which are ranked based on the degree of
membership of tuples in A and B.

Figure 5.9c) shows the contour plot for the disjunctive fuzzy operator. By overlaying Figure 5.2
on Figure 5.9c) it can be seen that any OABB intersects iso–similarity curves (unless it is the
whole space). This means no curve will be contained in any OABB, so unless the whole collection
is retrieved, no definite ranking exists. This results in two options, 1) return only those tuples in
the OABB, and 2) follow a different strategy. In the first case, to return t2, the OABB would cover
most of the collection, including t4, but t4 which is in OABB much earlier than any of t2 or t3 is
worse than t1, t2 and t3. Fortunately, we can follow a different strategy instead. By exploiting the
properties of the max operator, t1, t2 and t3 have the same membership degree, they only rely on
one (the maximum) of their membership degrees in sub-queries and thus can safely ignore the other.
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function GetNextOr Fuzzy(A, B)
1 // returns: next best tuple in A or B
2 flag = TRUE
3 while (flag)
4 ta= Peek (A), tb= Peek (B)
5 if ta.score > tb.score then
6 t= GetNext(A) // remove best tuple from A
7 else
8 t= GetNext(B) // remove best tuple from B
9 end if
10 flag = FALSE // assume candidate found
11 if t.tid ε Sres then
12 flag = TRUE // find new, was returned
13 end if
14 end while
15 Sres = Sres ∪ t
16 return t
end function

Figure 5.12: Algorithm Returning the Next Best for the Fuzzy or Interpretation

Since tuples with better membership degrees are examined first, this is sufficient to determine the
final membership degree.

The algorithm essentially consists of a merge based on the degree of membership value but
makes sure that a tuple that was already returned is ignored as a result (duplicate removal). This
accomplishes the desired max behavior of the degree function associated with the disjunction in
the fuzzy model.

5.4 Probabilistic Model Evaluation Algorithms

In this section, we present the algorithms to evaluate expressions for the probabilistic retrieval
model. For simplicity we restrict ourselves to compute only binary nodes. That is, we assume that
the query node Q has exactly two children, A, and B. As for the fuzzy model, algorithms are only
developed for the following three cases: Q = A ∧B, Q = A ∧ ¬B and Q = A ∨B.

In describing the algorithms the following notation is used:

• A tuple t is represented by a pair of components 〈t.tid, scoreQ(t)〉, composed by the key (t.tid)
which identifies the tuple id, and the similarity which identifies the probability that the tuple
satisfies the query (t.score).

• A and B are assumed to be streams as defined in section 5.1.3.

• Associated with each query expression Q are three sets Sa, Sb and Sres. Initially each of these
sets are empty. The query expression Q extracts tuples from the child streams (that is, A

and B) and may buffer them into Sa and Sb (these represent the πA and πB rectangles from
figure 5.2 respectively). The set Sres acts as a buffer of the tuples for the query expression Q.
Once a query expression Q is able to establish the probability of match of tuple t for Q (that
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Similarity Value

is, probabilityQ(t)), it places t in Sres(the result set.) Thus, t.score refers to the probability
that tuple t matches the query expression Q.

The following three sections describe the algorithms used to implement the above shown oper-
ations in an efficient manner. For clarity purposes, when describing the algorithms below we omit
some critical error and boundary checking which needs to be considered in any implementation.

5.4.1 Conjunctive Query with Positive Subqueries

The algorithm in figure 5.14 computes the set of tuples ranked on their probability of match to
the query Q = A ∧ B, given input streams A and B which are ranked based on their matching
probability of tuples in A and B.

It is interesting to note that an algorithm similar to the one proposed in section 5.3.1 will
not work properly. To understand this, observe figure 5.13a) and recall the OABB suggested
in section 5.1.3. The rectangle will contain a region with tuples that have been observed in both
streams, yet the distribution of probability is complex within this rectangle. This requires a modified
algorithm that returns tuples only when it is safe to do so. Similarly to the fuzzy case, there is a
minimum value iso–similarity curve completely covered by any OABB. The probability value for
this curve is defined by its intersection with the axes. So, for an OABB bounded by (a, b)-(1, 1),
all tuples with known probability of more than the maximum of a and b are safe to be returned.
Note however that the OABB will also contain tuples with known final probability less than this
amount, these are retained in an auxiliary set. Tuples in this auxiliary set become safe to return
when the OABB covers a sufficiently low iso–probability curve such that its probability is lower or
equal to that of the now safe tuple. As an example, consider figure 5.13a). There are four tuples in
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the whole collection. t2 is the first to be included in an OABB. When this happens, t1 is partially
known in πA. Even though OABB contains only one tuple with known final probability, it cannot
yet be returned since it does not lie on an iso–probability curve completely covered by OABB. Then
t1 will be included in OABB, but it also cannot yet be returned. The curve just below t1 intersects
with a vertical line drawn from t3. Until this is cleared, t1 and thus t2 cannot be returned. When t4

is added, the highest iso–probability curve that is lower than t1, t2 and t3 is clear of the projection
of t4 onto the axes, thus, it is safe to return all of t1, t2 and t3 at this stage.

The algorithm first tests if there is a safe tuple in the auxiliary set to return and does so if there
is one. Otherwise, it extracts the next best tuple from the better of A or B and tries to include
it in OABB by finding it to be in the intersection. If unsuccessful, it is stored in one of the sets
corresponding to πA or πB. The loop iteratively checks for safety and fetches tuples until a safe
tuple can be returned. Note that unlike in the fuzzy case, the only way to exit the loop is by an
tuple being safe as defined above. Of course in the fuzzy algorithms, returned tuples were also safe,
but the safety criteria is so simple, that multiple loop exists exist.

An optimization on this algorithm is to slightly modify the safety criteria. The criteria described
above is simple to understand: a tuple is not safe until all the region of higher probability has been
seen. The danger of not following this strategy is that for some tuples, only one probability has
been retrieved, and the other is unknown. The above safety criteria is pessimistic in that it assumes
that the other probability could be any value, while it is in fact bounded by the top probability in
the stream where the tuple has not yet been retrieved. If tk.score requires tk.scoreA and tk.scoreB

to compute tk.score = tk.scoreA× tk.scoreB, then an upper bound on the probability of tuple tk is:

Peek(A).score× tk.scoreB if tk.scoreB is known, or (5.1)

Peek(B).score× tk.scoreA if tk.scoreA is known

This more sophisticated criteria is not incorporated in figure 5.14, instead the simpler criteria
described above is included.

5.4.2 Conjunctive Query with Negative Subquery

We next develop the algorithm for computing the query Q = A∧¬B; it is shown in figure 5.15. The
algorithm is different compared to the one developed for the conjunctive query with no negative
sub-query. As described for the fuzzy model, a similar method to the conjunctive query with only
positive sub-queries could be used if traversing the B stream in inverse was feasible. This is however
not the case. This algorithm follows the safety criteria specified in the previous section, however
only the stream for A is used in computing the probability of tuples according to A ∧ ¬B. Tuples
are retrieved from the input stream A in rank order. For a given tuple t its probability with respect
to the sub-query ¬B is evaluated by performing a probe on tuple t and evaluating its probability
of match. Once the probability of match of a tuple t according to ¬B has been established, we can
determine its final probability according to the query Q, and the tuple is inserted into an auxiliary

60



function GetNextAnd Probability(A, B)
1 // returns: next best tuple in A and B
2 flag = TRUE
3 while (flag)
4 ta= Peek (A), tb= Peek (B)
5 if Saux 6= ∅∧ Max(ta.score, tb.score) <
6 MaximumProbability(Saux) then
7 t= tuple from Saux with maximum probability
8 Saux = Saux − t
9 flag = FALSE
10 else
11 if ta.score > tb.score then
12 ta= GetNext(A)
13 Sa= Sa∪ ta

14 if ta ∈ Sb then
15 tb= tuple from Sb equivalent to ta

16 t= ta

17 t.score = ta.score × tb.score
18 Sa= Sa-ta, Sb= Sb-tb, Saux = Saux ∪ t
19 end if
20 else
21 // symmetric code to then branch
22 end if
23 end if
24 end while
25 Sres= Sres∪ t
26 return t
end function

Figure 5.14: Algorithm that Implements the and Operator for the Probabilistic Interpretation

set that is used to verify the safety criteria. A tuple is only returned if it successfully passes the
safety test, thus every returned tuple was in the auxiliary set. Effectively, every tuple retrieved
from A results in a probe to B.

5.4.3 Disjunctive Query

Finally, to compute a disjunctive query node, we need the algorithm shown in figure 5.16. Disjunc-
tive queries are hard to compute in this case. Consider figure 5.13c), tuples t1, t2 and t3 have very
similar probabilities. In the fuzzy case, the iso–similarity curves were parallel to the axes and we
could exploit the max behavior. This is not possible here. In addition notice that no iso–probability
curve will be contained in any OABB (unless everything is read in). Two distinctions exist with
the fuzzy version,

• the final probability does depend on all the query terms while in the fuzzy model, only the
best one is relevant

• iso–probability curves are not even piecewise parallel to the axes

Since tuple t may have a higher probability in one stream than another, we would need to store
it until a possibly much worse (and much later) match occurs from the other stream. Indeed, to
return t1, both t2 and t3 need to be included in the OABB. Potentially, this results in a very large
initial overhead (latency) to find the first few results. To overcome this limitation, once a tuple is
seen for the first time, its full probability is established with appropriate probes.
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function GetNextAnd Not Probability(A, B)
1 // returns: next best tuple in A and not B
2 flag = TRUE
3 while (flag)
4 ta= Peek (A) // best from A
5 if Saux 6= ∅ ∧ ta.score < MaximumProbability(Saux) then
6 t= tuple from Saux with maximum probability
7 Saux = Saux − t
8 flag = FALSE
9 else
10 t= GetNext(A)
11 tb.score = Probe(t,¬B)
12 t.score = t.score × tb.score
13 Saux = Saux ∪ t
14 end if
15 end while
16 Sres= Sres∪ t
17 return t
end function

Figure 5.15: Algorithm that Implements the and not Operator for the Probabilistic Interpretation

function GetNextOr Probability(A, B)
1 // returns: next best tuple in A or B
2 flag = TRUE
3 while (flag)
4 ta = Peek(A), tb = Peek(B)
5 if Saux 6= ∅ ∧ ta.score + tb.score− ta.score× tb.score ≤

MaximumProbability(Saux) then
6 t = tuple from Saux with maximum probability
7 Saux = Saux − t
8 flag = FALSE
9 else
10 if ta.score > tb.score then
11 ta= GetNext(A)
12 Sa= Sa∪ ta

13 if ta /∈ Sb then // do a probe
14 tb = Probe(B, ta.id)
15 t.tid = ta.tid
16 t.score = ta.score + tb.score− ta.score× tb.score
17 Saux = Saux ∪ t
18 end if
19 else
20 // symmetric code to then branch
21 end if
22 end if
23 end while
24 Sres= Sres∪ t
25 return t
end function

Figure 5.16: Algorithm that Implements the or Operator for the Probabilistic Interpretation

62



To follow the algorithm, the notion of safety is used again. When is it safe to return t1 given
that we only have partial knowledge for t2 and t3? Probes are used to establish missing probabilities
and a final probability score is computed. Tuples are then stored into an auxiliary set until they
can safely be returned.

Tuples can safely be returned when their known probability is larger than the best to come. All
tuples in Saux can be partitioned into those with probability above (safe set) and below (unsafe
set) the value Peek(A).score + Peek(B).score − Peek(A).score × Peek(B).score. Those in the
safe partition necessarily have higher probability than those in the unsafe partition, but also any
combination of tuples that remain to be considered in streams A and B would fall into the current
unsafe partition. Tuples from the safe set can now be returned in rank order. The algorithm grows
Saux one by one and at each stage verifies for safety. The safe set may contain at most one element,
if present it is returned as an answer and removed from the safe set.

The algorithm assumes that probing is possible on sub-queries. So far, only algorithms based
on negation have required this and then only for the negation operator. If probing on sub-queries
is expensive, an alternate algorithm (not shown here) can be constructed as in the conjunctive
query case. When one component probability of an tuple tk is known, an upper bound on the final
probability is established by:

upper(tk) = Peek(A).score + tk.scoreB − Peek(A).score× tk.scoreB if tk.scoreB is known, or(5.2)

upper(tk) = Peek(B).score + tk.scoreA − Peek(B).score× tk.scoreA if tk.scoreA is known

And the known probability component is a lower bound (lower(tk)). Based on the known bounds for
tk, instead of waiting to complete its final probability, it is estimated as its lower bound (lower(tk)).
Once no upper bound (upper(tj)) of any unsolved tuple can exceed lower(tk), and no combination
of any tuples left in A and B can exceed lower(tk), then tk is safe to return and is returned with
probability lower(tk).

5.5 Comparison of Algorithms to Other Work

Recently, [46] proposed an algorithm to return the top k answers for queries with monotonic scor-
ing functions that has been adopted by the Garlic multimedia information system under develop-
ment at the IBM Almaden Research Center [42]. A function F is monotonic if F (x1, . . . , xm) ≤
F (x′1, . . . , x′m) for xi ≤ x′i for every i. Note that the scoring functions for both conjunctive and
disjunctive queries for both the fuzzy and probabilistic Boolean models satisfy the monotonicity
property. In [46], each stream i is accessed in sorted order based on the degree of membership to
form a ranked set Xi, and a set L = ∩iXi that contains the intersection of the objects retrieved
from all streams. Once L contains k objects (to answer a top k query), all objects in ∪iXi are used
to perform probes on whichever streams they were not read from. This essentially completes all
the information for the objects in the union and enables a final definite scoring and ranking of all
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objects in ∪iXi, then the top k are the final answer. This algorithms works in the general case,
and is tailored in [46] to some specific specific scoring functions. This algorithm relies on reading
a number of objects from each stream until it has k in the intersection. Then it falls back on
probing to enable a definite decision. In contrast, our algorithms are tailored to specific functions
that combine object scoring (here called fuzzy and probabilistic models). Our algorithms follow a
demand driven data flow approach [60]. Instead of asking for the top k objects, only the next best
element is requested and returned. This follows a fine grained pipelined approach. According to
the cost model proposed in [46], the total database access cost due to probing can be much higher
compared to the total cost due to sorted access. Only our algorithms involving negation require
probing. We used probing in section 5.4.3 for convenience, but sketched an alternate algorithm
that does not require probing. Our demand driven approach reduces the wait time of intermediate
answers in a temporary file or buffer between operators in the query tree. This model is efficient in
its time-space product memory costs [60]. On the other hand, in Garlic, the data items returned by
each stream must wait in a temporary file until the completion of the probing and sorting process.
In [126], the authors discuss how to best estimate the probability of disjunctions, their results are
similar to ours. Also, in the query processing model followed in MARS, the operators are imple-
mented as iterators which can be efficiently combined with parallel query processing [59]. In our
work, we assumed that the execution costs of different predicates are roughly the same and can be
ignored. In [29] the authors deal with the case where there this does not hold, and construct an
approach to minimize probing of expensive predicates. In [108] the authors explore algorithms to
merge ranked lists for complex user defined join predicates.

Another approach to optimizing query processing over multimedia repositories has been pro-
posed in [32]. It presents a strategy to optimize queries when user’s specify thresholds on the
grade of match of acceptable objects as filter conditions. It uses the results in [46] to convert top-k
queries to threshold queries and then process them as filter conditions. It shows that under certain
conditions (uniquely graded repository), this approach is expected to access no more objects than
the strategy in [46]. Like the former approach, this approach also requires temporary storage of
intermediate answers and sorting before returning the answers to the user. Furthermore, while the
above approaches have mainly concentrated on the fuzzy Boolean model, we consider the weighted
summation, fuzzy, and probabilistic models.

5.6 Evaluation

Our evaluation addresses the performance of some algorithms discussed in this chapter. Evaluation
of query processing and optimization focuses on the traditional computational performance as
opposed to the quality of results.

For our experiments we used the Corel collection available online at http://kdd.ics.uci.edu/.
This dataset provides color and texture features alongside other information for 68,040 of the Corel
images. We populated a relation CorelTable with the attributes: tuple id (integer to uniquely iden-
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tify the image), category (single word stating the image category, e.g., “Wildlife”), text description

(description of image, up to 300 bytes long), color (16-dimensional color histogram), and texture

(16-dimensional co-occurrence texture). We concentrated on retrieving those images closest to
given examples in color and texture. The query condition q is thus q = ˜color ∼ ∧ ˜texture

where ˜color = (color ∼= c1) and color histogram similarity is computed by histogram intersec-
tion, and ˜texture = (texture ∼= t1) where texture similarity is computed by Euclidean distance
and converted to similarity (see appendix A). We use a weighted summation interpretation of
similarity operators as presented in section 4.2, thus the score for each tuple t is computed as
t.score = wcol × ˜color(t) + wtex × ˜texture(t), and wcol + wtex = 1. The following indices exist on
CorelTable: a B-Tree index on category, a 16-d multidimensional HybridTree [25] index on color

and a 16-d multidimensional HybridTree index on texture. We generate the input ranked lists
into our algorithm with a k-nearest neighbor algorithm (descibed in detail in chapter 8) on the
HybridTree index. The relation and index page size is 4KB, and all experiments were conducted
on a Sun Ultra Enterprise 450 with 1 GB of memory and several GB of secondary storage, running
Solaris 2.7.

A naive evaluation is to do a sequential scan and evaluate the query condition for each tuple.
We consider this as the baseline and compare the performance of several query plans for the query
condition q presented above and then add a precise predicate to q. First, we consider a similarity
query for the best 10 matches involving the query condition q for the four plans discussed in
example 3.3.10. We compare their I/O and CPU performance as follows:

• Linear Scan (LS), or top10(σ gcolor ∼∧ gtexture
(CorelTable)) where the I/O cost is 68,040

avg tuples per page ≈
8000 sequential disk accesses since avg tuples per page = page size

tuple size = 4096
450 = 9. Assuming

sequential I/O to be about 10 times faster than random I/O, in terms of random I/O the
cost is ≈ 800. The CPU cost is the cost of computing the similarity score of each tuple in
CorelTable.

• Color Index (COLIDX), or top10(σ gcolorIDX
(CorelTable).̂/ gcolor ∼∧ gtexture

CorelTable) uses the
color index to retrieve the best color matches and access full tuples in CorelTable for other
attributes. The random disk I/O cost is that of accessing the index pages from the k-NN
algorithm, and that of accessing full tuples in CorelTable; each full tuple access is one random
disk access. The CPU cost is the time needed by the k-NN algorithm for index computations,
and for scoring full tuples.

• Texture Index (TEXIDX), or top10(CorelTable .̂/ gcolor ∼∧ gtexture
(σ gtextureIDX

(CorelTable))).
As above but using the texture index instead of the color index.

• Both Indices (BOTHIDX), or top10(σ gcolorIDX
(CorelTable).̂/ gcolor ∼∧ gtexture

(σ gtextureIDX
(CorelTable))),

retrieves the best color and texture matches and merges them with our algorithm for weightes
summation conjunction. I/O and CPU costs are obtained as above.
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Figure 5.17: Performance of Different Relative Weighs of Color and Texture

The total cost (in seconds) is the addition of the CPU and the I/O costs (assuming 10ms per
random I/O and 1ms per sequential I/O). The results are averaged over 50 queries with randomly
generated query points for ˜color and ˜texture.2 Figure 5.17 compares the performance of the plans
for various values of color weights wcol (wtex = 1−wcol). TEXIDX is best for low values of wcol ≤ 0.3
while COLIDX is best for very high values of wcol ≥ 0.95. The asymmetry between TEXIDX and
COLIDX is due to differing similarity distributions in the feature spaces [13]. BOTHIDX is most
efficient for all other values of 0.3 ≤ wcol ≤ 0.95. LS suffers mainly due to its high CPU cost
(figure 5.17(b)).

2Note that for COLIDX, TEXIDX and BOTHIDX, we implemented the priority queue-based k-NN algorithm
on top of the multidimensional index structure [70, 131] as well as the “merging” algorithm that retrieves items
from the index(es), accesses the full tuples, maintains them in sorted order based on the overall similarity score and
incrementally returns the best retrieved tuple when it is guaranteed to be the next best match (i.e., no unexplored
tuple with a higher score exists) [46, 115].
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Chapter 6

Query Refinement Model

6.1 Introduction

The query refinement model is an important aspect of our approach which lets users iteratively
pose and refine queries, and is intimately related to the data model and the similarity matching
model. Figure 6.1 shows how query refinement is done in our model. The user forms an abstract
information need that describes her desired information, expresses it in SQL form, submits the SQL
query to the system which creates a plan and then executes it and sends the results back to the
user. The user can then indicate to the system which results are indeed relevant and which results
are not. Query Refinement is achieved by modifying a query condition in three ways: (1) changing
the interpretation of the user-defined domain-specific similarity predicate functions (intra-domain),
(2) changing the interpretation of operators that connect other predicates together (inter-domain),
and (3) adding new predicates to the condition or removing subexpressions from it. The refined
query is then re-optimized and executed, possibly re-utilizing previous results, and a new answer
set is produced.

We now discuss the meaning of query refinement and present a framework for several levels
of refinement. The discussion is independent of any particular interpretation of intra- and inter-
domain predicates and operators. A possible interpretation is presented in chapter 7.

6.2 Semantics of Query Refinement

We first discuss the meaning of query refinement that we expect to realize in our model. Intuitively,
we expect that changes in the query based on the users feedback will lead to better answers.
Formally, the notion of convergence refers to the desire that at each iteration the results improve
and eventually reach a stable state. For a specific query let there be:

• An arbitrarily ranked set, called the Ground Truth Set, provided by the user where the t.score

attribute reflects the degree to which the user judges the tuple to match the query and reflects
the users subjective perception (information need). This ranked set is based on the entire
possible set of tuples, i.e., the universe.
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Figure 6.1: Query Refinement Architecture

• A response to the query; the user receives a ranked answer set of n tuples where the ti.score

attribute is the similarity of tuple ti to the query. This is the Ranked Answer Set.

• At each iteration, a user supplied set of tuples ti ∈ Ranked Answer Set and for each tuple a
judgment for the degree to which it satisfies the query. This is the Feedback Set.

• A function F (RS1, RS2) that compares two ranked sets and returns a similarity value for the
comparison in the range [0,1] where 1 means the ranked sets are identical and 0 means they
are very different. This can be the normalized recall metric [137] or a variation [124].

As discussed previously and shown in figure 6.1, the user executes an initial query and then
submits a Feedback Set which is a series of tuples each with attached relevance judgments for
relevance feedback, and a new ranked set is produced: Ranked Answer Seti ⊕ Feedback Set −→
Ranked Answer Seti+1.1

The goal of query refinement is to change the original query such that the similarity between
the Ground Truth Set and the Ranked Answer Set increases until they are as close as possible or
identical. This property is known as convergence:

Definition 6.2.1 (Convergence) Convergence of query refinement is the non-decreasing simi-
larity between the ground truth set and the results with each iteration i:
F (Ranked Answer Seti+1, Ground Truth Set) ≥ F (Ranked Answer Seti, Ground Truth Set).

The meaning of query refinement is that in response to user feedback, the ranked set answers
produced by the system adapt to a ranked set that the user constructed based on the whole

1Assuming the ⊕ operator denotes the refinement operation.
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Figure 6.2: Refinement Model Design Space

database. The assumptions of this model are that users are not malicious, that is, they provide
feedback that is consistent with their desired goal or information need, and that it is possible to
provide a Ground Truth Set for the entire universe.

6.3 Query Refinement Framework

Query Refinement spawns a large design space, including the modality in which a user specifies the
feedback, the initial conditions of the query, and the scope of the refinement which can include a
single or more attributes or tables. Figure 6.2 shows three dimensions of the identified design space.
In this figure, the closer to the origin, the simpler it is for a system to compute the next query to
execute. Further from the origin the system has more difficulty in determining the new query. This
query refinement design space is general in that it only identifies different design aspects and does
not propose a specific method.
Feedback Interaction. Along the top dimension, the user provides decreasingly explicit infor-
mation about relevant items, by going from detailed per column feedback judgments to feedback
on the overall tuple. The options are:

1. Fully manual: the user changes predicates, and possibly adds or removes tables. This is the
traditional interaction with databases and search engines where users formulate new queries
themselves.

2. Column level: the user indicates which attribute values, among the result tuples, are rele-
vant to the user and which are not. The system then modifies the query to incorporate these
preferences.

3. Tuple level: the user selects entire tuples for feedback and lets the system figure out how
to modify the query.

Tuple level feedback is less specific than column level feedback as the system does not know which
attribute values are relevant, only that the entire tuple is relevant. From a user interface standpoint,
tuple level feedback is less burdensome to the user.
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For example, a user searches for jobs that pay around $60,000 in the job openings table of
example 1.0.2, the answers are: 〈programmer,New Y ork, $70, 000〉, 〈tester, Los Angeles, $65, 000〉,
and 〈analyst, Los Angeles, $60, 000〉. The user focuses on jobs in California, therefore she indicates
for the first tuple that New York is a bad location example, but $70,000 is a good salary example
(column level feedback). The second tuple is good overall as it pays more than expected and the job
is in California (tuple level feedback). Finally, the last tuple’s job is in California, a good example,
and the salary is also good (column level feedback). The feedback summary is: 〈−, bad, good〉,
〈tuple is good〉, and 〈−, good, good〉.
Initial Conditions. The user can give many initial conditions, or give less and less predicates
until only the tables involved are specified without a condition and the system is left to find the
proper predicates. In increasing order of difficulty, the options are:

1. Many or all: The user specifies many or all the initial conditions desired, which implies the
user has a very certain idea of what she wants.

2. One or a few: the user has some idea of what she wants, and allows initial ranking of the
results. The user then tightens or widens the query using refinement, and the system adds
or removes predicates to reflect this.

3. No condition: The user specifies only the tables involved in the query and the system
presents a cross product of the tables. The user provides feedback on these answers and
machine learning techniques can be used to learn appropriate predicates.

Following our above job search example, the original query included only a target salary of
$60,000, but no predicate on location. The query falls in the second category (one or a few) since
later location became important. If the user knew in advance the importance of the job location,
she would have included predicates on location and salary to fully specify all initial conditions.
This illustrates the need to support addition and removal of predicates in query conditions.
Refinement Scope. In the bottom dimension, the scope of the refinement says what structural
components are involved in refinement. The scope increases from refining a single predicate on an
attribute to balancing multiple or complex attributes in multiple tables and adding or removing
predicates in the query. This is depicted in figure 6.3, the different options include:

1. Single predicate: the interpretation of the similarity predicate for individual attributes
change thus affecting the ranking of results.

2. Multiple predicate balancing: the contributions of different predicates are re-balanced in
the scoring rule to emphasize important predicates.

3. Query predicate addition/deletion: predicates are added to or dropped from the query
condition and the predicates in the scoring rule are re-balanced; this incorporates in the
query those predicates that are important but not considered initially, or dismisses useless
predicates from the query.
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Figure 6.3: Feedback Range of Action

Several parts of the query condition may change in our above job search example. The original
target salary of $60,000 was improved by two examples, thus, the interpretation of the predicate that
matches salary may change to a target salary of $65,000 to reflect this (single-predicate refinement).
We decided to add a predicate on location to concentrate on California, this is an example of
query predicate addition/deletion and the relative importance among these two predicates must be
balanced properly.

6.4 What can change?

As discussed in section 6.3, the design space for a refinement system is extensive, here we briefly
list in the broadest terms what can change in a query. Using feedback, a query refinement can
modify the following parameters to improve a query:

• change the structure of the query condition

• add or remove similarity predicates to the query condition

• change the weight associated with each similarity predicate

• change the parameters of any similarity predicate

• change the query values of any similarity preciate

Example 6.4.1 (Refining Job Searches) In example 3.3.8, we matched applicants to positions
based on skills and salary using the query: applicant ./resume∼=description ∼∧ desired salary∼=salary

jobs. By examining the results, the user implicitly wants to look for senior applicants which have
more skills, and considers that geographic proximity may be a benefit commensurate with salary.
This query may be modified in the following ways:

• Add home location ∼= location to the query with a disjunction to show that geographic
proximity is important but indicates that salary or geographic proximity are desirable and
interchangeable.

• Add age ∼> 30 to indicate a desire for senior level applicants.
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• Modify the interpretation of the ∼ ∧ operator to give more importance to the resume ∼=
description predicate. This is done by increasing the weight of the predicate.

This produces the query:
σage∼>30(applicant) ./resume∼=description ∼∧ (desired salary∼=salary ∼∨ home location∼=location jobs.
This list of changes falls into several categories, the user initially indicated a subset of the desirable
conditions thus producing an initial ranking, and the changes involve attributes in several tables.

In this chapter we described our similarity retrieval model, specified what we expect from query
refinement and gave a framework for classifying different features of a query refinement model. This
chapter has ignored concrete approaches to query refinement. In chapter 7 we explore how query
refinement interacts with similarity conditions.
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Chapter 7

Query Refinement Strategies

7.1 Introduction

The purpose of query refinement is to better capture what the user wants, i.e., the users information
need. The user forms an abstract information need that describes what she wants, expresses it in
SQL form with similarity predicates and scoring rules, submits the SQL query to the system which
evaluates it and sends the results to the user. Users then indicate good and bad answers and let
the system modify the query in order to improve the quality (ordering) of answers.

Query refinement occurs at two levels, within predicates over the same domain through the
user-defined type specific refinement functions, called intra-predicate query refinement, and across
different attributes in a query, thus it affects the interpretation of the operators described in the
similarity matching model described in chapter 3, this is called inter-predicate query refinement.

Many different refinement implementation are possible, in this section, we present a set of refine-
ment techniques based on certain assumptions about the query conditions, in particular, we assume
a weighted summation model to combine multiple similarity predicates and restrict conditions to
conjunctions. The motivation for this restriction is that users rarely pose similarity queries looking
for distinct concepts, which makes disjunctions less attractive. The specific interpretations provided
here fall in the 〈 manual − semi manual, all or many conditions, single attribute − many attributes
〉 category, in which (1) semi manual means the user submits relevance feedback via examples or a
new query (manual) and (2) specifies most of the needed conditions, and single attribute to many
attributes means that the techniques can simultaneously change the interpretation of individual
intra-domain predicates and across domains, but is unable to add predicates to ranking expressions,
thus it is not “many/ any attributes from tables involved”. Even with this minimal expansion in
the design space, much can be accomplished in refinement algorithms and retrieval performance
improvement as demonstrated in the experiments (see section 7.5).

Figure 7.1 shows the many levels at which refinement is possible in this particular interpreta-
tion/scenario. Those parameters or knobs that can be tuned or modified are shown in boldface in
the figure. We discuss this figure in a bottom-up fashion. In intra-predicate refinement, the sim-
ilarity predicate for individual query points can be modified by changing the similarity functions
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itself,next the query point itself can be moved, the shape of the query region can be distorted with
weights along type dimensions, and the shape of this warped query space can also be rotated as
done by the MindReader system [134, 78]. Still in the intra-predicate refinement, multiple points
are aggregated with a function θ which here is a weighted summation with individual weights for
each query points similarity. The clustering policy determines how new points can be added or
old points removed from the multi-point query. Finally several domains are combined in the inter-
predicate refinement, here, a function θ is used to combine the inter-predicate similarity values,
here we again use a weighted summation function [116]. The clustering policy can add or delete
predicates from the ranking expression, in this case, it does neither and just follows a re-weighting
of the predicates already in the ranking expression (cluster). Modifying the clustering policy to
include new predicates would expand the scope of this scenario to include the “many/any attributes
from tables involved” property from our framework.

Support for query refinement requires the DBMS to maintain sufficient state information and
provide supporting interfaces to query refinement functions. In section 7.2 we present the needed
supporting data structures and describe the interface and goals of the refinement support functions.
These data structures are used by the refinement algorithms. Query refinement is achieved by mod-
ifying queries in three ways: (1) changing the interpretation and weights of query conditions (inter-
predicate refinement), (2) adding or removing predicates to the condition (inter-predicate refine-
ment), and (3) changing the interpretation of the user-defined domain-specific similarity predicate
functions (intra-predicate refinement). The system provides algorithms to support inter-predicate
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refinement since it is independent of any domain, this does not mean that a single interpretation is
used, rather multiple interpretations of refinement and scoring rules are possible within the system
framework. On the other hand, user-defined functions are responsible for providing intra-predicate
refinement. We discuss strategies for inter-predicate refinement in section 7.3 and discuss several
strategies for a sample multidimensional user-defined data-type in section 7.4.

7.2 Query Refinement Processing Support

To support refinement of a result, we collect relevance judgments on a subset of the answers and
generate an auxiliary table used by the refinement algorithms.

7.2.1 Answer and Feedback Tables

To refine a query, all values of tuples where the user gave feedback judgments must be available,
they are needed since refinement is guided by the values of relevant and non-relevant tuples. In
some queries, maintaining this information may be complicated due to loss of source attributes
in projections or joins where attributes may be eliminated. To enable query refinement, we must
include sufficient information in the answer to recompute similarity scores. Therefore, we construct
an Answer table as follows:

Algorithm 7.2.1 (Construction of temporary Answer table for a query) The answer ta-
ble has the following attributes: (1) a tuple id ( tid), (2) a similarity score S that is the result of
evaluating the scoring rule, (3) all attributes requested in the select clause, and (4) a set H of hid-
den attributes. The set of hidden attributes is constructed as follows: for each similarity predicate
in the query, add to H all fully qualified1 attribute(s) that appear and are not already in H or the
attribute was requested in the query select clause. All attributes retain their original data-type.

Results for the hidden attributes are not returned to the calling user or application. Retaining
attributes that are involved in scoring simplifies the detailed re-computation of scores later needed
for the refinement process.

We also construct a Feedback table for the query as follows:

Algorithm 7.2.2 (Construction of temporary Feedback table for a query) The attributes
for the Feedback table are: (1) the tuple id (tid), (2) a tuple attribute for overall tuple relevance,
and (3) all attributes in the select clause of the query. All attributes are of type integer (except the
tid). The table is populated with the user’s feedback.

The user populates the feedback table with a variation of the SQL insert command:

insert into feedback tid=〈tid〉 relevance=〈value〉 values (value1,...,valuen)

The parameters are (1) the tuple id of the tuple in the result ranked set for which a judgment is
1Same attributes from different tables are listed individually.
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T:
tid a b c d

select S, a, b
from T
where d > 0 and

b ∼= b̂(vb)[wb] ∼ and
c ∼= ĉ(vc)[wc]

order by S desc

wa, wb, wc predicate weights
â, b̂, ĉ query values for
va, vb, vc predicate parameters

Answer:
tid S a b c
1 s1 a1 b1 c1

2 s2 a2 b2 c2

3 s3 a3 b3 c3

4 s4 a4 b4 c4

Feedback:
tid tuple a b
1 1 0 0
2 0 0 1
3 0 -1 1
4 0 0 -1

Scores:
tid a ∼= a1 b ∼= b̂ c ∼= ĉ
1 1.0 0.8 0.9
2 – 0.9 –
3 0.2 0.8 –
4 – 0.3 –

Figure 7.2: Data Structure Example for Query Refinement – Single Table

submitted, (2) an integer that specifies the tuple level relevance for tuple level feedback (the value
immediately following the relevance keyword), and (3) an integer value for each column in the result
ranked set specifying the column-level relevance. No feedback is provided for computed attributes
such as the score. The integer values for the tuples and columns are 0 for neutral opinion, positive
values (i.e., 1) for good matches, and negative values (i.e., -1) for bad matches.

Example 7.2.1 (Answer and Feedback table construction) Figure 7.2 shows a table T with
four attributes, and a query that requests only the score S, and the attributes a and b. The query
has similarity predicates b ∼= b̂, and c ∼= ĉ, so attributes b and c should be in H. But b is in the
select clause, so only c is in H and becomes the only hidden attribute. Attribute d is not in H since
the predicate d > 0 is not a similarity predicate. The feedback table is constructed as described in
algorithm 7.2.2 and contains the tid, tuple, a, and b attributes. Figure 7.2 shows a sample Feedback
table, notice that we used both tuple and attribute level feedback in this example. The user indicated
that tuple 1 is a good answer overall, attribute b of tuples 2 and 3 are good examples, but attribute
a of tuple 3 and b of tuple 4 are bad examples. There is no detailed feedback on attribute c since it
is hidden from the user, but it is important since tuple 1 is relevant and thus the value of attribute
c of tuple 1 is needed.

Figure 7.3 shows Answer and Feedback tables when a join involves a similarity predicate. The
figure shows a join of tables R and S using the similarity predicate R.b ∼= S.b. Attribute a is not
in H since it is listed in the select clause. Although the attributes R.b and S.b are not in the project
list, we retain their values since they come from two different tables (the figure lists them together).
We again keep these attributes hidden from the user. The Feedback table is constructed as above
and populated: tuples 1 and 3 are overall relevant, while tuple 2 is not relevant overall. Attribute
a of tuple 4 is also deemed not relevant. Note that it is not necessary for the user to give feedback
for all tuples in the answer set despite what is shown in this example.
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R:
tid a b c

S:
tid b c d

select S, a, d
from R, S
where d > 0 and

a ∼= â(va)[wa] ∼ and
R.b ∼= S.b(vb)[wb]

order by S desc

wa, wb predicate weights
â, b̂ query values
va, vb predicate parameters

Answer:
tid S a d 〈b〉
1 s1 a1 d1 R.b1, S.b1

2 s2 a2 d2 R.b2, S.b2

3 s3 a3 d3 R.b3, S.b3

4 s4 a4 d4 R.b4, S.b4

Feedback:
tid tuple a d
1 1 0 0
2 -1 0 0
3 1 0 0
4 0 -1 0

Scores:
tid a ∼= â d ∼= d1 R.b ∼= S.b
1 0.7 0.9 0.8
2 0.8 0.5 0.7
3 0.3 0.4 0.6
4 0.6 – –

Figure 7.3: Data Structure Example for Query Refinement – Similarity Join

7.2.2 Scores Table

We build an auxiliary Scores table that combines the user supplied feedback and the values from
the answer table, and then populate the table:

Algorithm 7.2.3 (Construction of Scores table) The Scores table has the following attributes:
(1) a tuple id (tid), (2) all attributes in the select clause, (3) all attributes in the hidden set H.
If two attributes appear in a similarity join predicate, they are fused into a single attribute. All
attributes except the tid are real valued in the range [0,1] or are undefined. The table is populated
with the scores of values for which the user specifies feedback and whose attributes are involved in
some similarity predicate in the query. For a pair of values such as in a join predicate, a single
score results. Figure 7.4 shows the algorithm to populate the Scores table.

Example 7.2.2 (Populating the Scores table) Consider for example, figure 7.2. The Scores
table contains columns labeled b ∼= b̂ and c ∼= ĉ, that correspond to attributes b and c in the query.
An entry in the column for a tuple in the Scores table indicates the similarity score between the
query values b̂ and ĉ and the values of attributes b and c in the corresponding tuple from the Answer
table. Note that the Scores tables in figures 7.2 and 7.3 also contain columns labeled a ∼= a1 and
d ∼= d1, the computation of those columns and their relevance in query refinement will be discussed
in section 7.3.1.

7.2.3 Support Functions

The refinement process is implemented by user-defined functions attached to our system. Re-
finement functions modify the similarity predicates interpretation. We define the interface for
refinement functions for similarity predicates and scoring rules, section 7.4 discusses their imple-
mentation.
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for-all tuples t in Feedback table

for-all attributes x in t
if ((t.x 6= 0)∨(t.tuple 6= 0)∧∃ predicate Z on x

// there is non-neutral feedback on

attribute x
Scores table [tid = t.tid, attribute = x] =

Z(Answer table [tid = t.tid, attribute =
x]) // recreate detailed scores

Figure 7.4: Scores Table Computation

applies(x) = predicates compatible with

data-type(x)
xquery = Answer table

[top relevant tuple, attribute = x]
for-all predicates Z(x, xquery) ∈ applies(x)

for-all tuples t in Answer table

if Feedback table [tid = t.tid, attribute = x] 6= 0
Scores table [tid = t.tid, attribute = x] =

Z(Answer [tid = t.tid, attribute = x], xquery)

compute relevant and non-relevant avg and

stddev

if avg rel−stddev rel > avg non rel+stddev non rel
keep predicate Z and its difference

add predicate Z with maximum difference to the

query

Figure 7.5: Predicate Addition Computation

Definition 7.2.1 (Similarity predicate refinement function interface) For each similarity
function that implements a similarity predicate, there is a corresponding function named by append-
ing “ refine” to its name. The function inputs are a list of answer values, a list of corresponding
answer values in case this predicate is used in a join, and a list with the corresponding feedback
judgments: similarity predicate refine( list〈valueanswer〉, list〈valuejoin〉, list〈relevance〉). The
function modifies the corresponding predicate query value(s), parameters, etc. to better reflect what
the user wants. The valueanswer and relevance lists are taken directly from the Answer and Feed-
back tables. The valuejoin list is taken from the Answer table if this is a join predicate, or is set
to null otherwise.

Example 7.2.3 (Refinement function for location similarity) The function close to imple-
ments geographic similarity for the data-type of example 3.3.2. The corresponding refinement func-
tion is declared as: close to refine(list〈valueanswer〉, list〈valuejoin〉, list〈relevance〉).

7.3 Inter-Predicate Query Refinement

First we discuss how to add and remove similarity predicates from conjunctions and then turn
our attention to the problem of finding the appropriate weights for each similarity predicate. As
discussed in section 7.1, we focus on conjunctions and the weighted summation model in developing
these techniques.

7.3.1 Predicate Addition

The inter-predicate selection policy of figure 7.1 adds predicates to or removes them from the query
condition, we discuss addition of predicates here and later their removal. Users may submit coarse
initial queries with only a few predicates, therefore supporting the addition of predicates to a query
is important. In figure 7.2, attribute a was ranked relevant for tuple 1 (since the tuple is relevant
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overall), and non-relevant for tuple 3. This suggests there might be merit in adding a predicate on
attribute a to the query. We now discuss if and how this can be achieved.

Intuitively, we must be conservative when adding a new predicate to the query as it may
significantly increase the cost of computing the answers, and may not reflect the users intentions.
For these reasons, when adding a predicate, it must be added with a small initial weight to keep the
addition from significantly disrupting the ranking of tuples since before the addition the effective
predicate on the attribute was true.

To add a predicate on an attribute to the query, a suitable predicate must be found that
applies to the given data-type, fits good the given feedback, and has sufficient support. Our
algorithm for predicate addition is shown in figure 7.5. Based on catalog information, a list of
similarity predicates that apply to the data-type of attribute a is constructed, this list is denoted
by applies(a). The Answer table is explored to find the highest ranked tuple that contains positive
feedback on attribute a and take a’s value. In figure 7.2, this value is a1. This value (a1) becomes
the plausible query value for the new predicate. Next, we iterate through all predicates in the list
applies(a), and for each value of attribute a in the Answer table that has non-neutral feedback, we
evaluate its similarity score using a1 as the query value, and set the similarity score in the Scores
table. The weights for the predicate are the default weights for that predicate (taken from the
metadata). Say predicate a ∼= a1 ∈ applies(a) is under test. Under the Scores table in figure 7.2,
a ∼= a1 = 1.0 and a ∼= a3 = 0.2 where a1 is relevant and a3 is not relevant. A predicate has a
good fit if the average of the relevant scores is higher than the average of the non-relevant scores.
In this case, this is true. In addition to this good fit, to justify the added cost of a predicate, we
require that there is sufficient support. Sufficient support is present if there is significant difference
between the average of relevant and non-relevant scores; this difference should be at least as large
as the sum of one standard deviation among relevant scores and one standard deviation among non-
relevant scores. If there are not enough scores to meaningfully compute such standard deviation,
we empirically choose a default value of one standard deviation of 0.2. In this example thus, the
default standard deviations for relevant and non-relevant scores add up to 0.2+0.2 = 0.4 and since
average(relevant)− average(non-relevant) = 1.0− 0.2 = 0.8 > 0.4 then we decide that predicate
a ∼= a1 is a good fit and has sufficient support (i.e., separation) and is therefore a candidate to
being added to the query. We choose a ∼= a1 over other predicates in applies(a) if the separation
among the averages is the largest among all predicates in applies(a).

The new predicate a ∼= a1 is added to the query condition with a weight equal to one half
of its fair share, i.e., 1/(2 × |predicates in scoring rule|). We do this to compensate for the fact
that we are introducing a predicate not initially specified and do not want to greatly disrupt the
ranking. If there were four predicates before adding a ∼= a1, then a ∼= a1 is the fifth predicate
and its fair share would be 0.2, we set a weight of 0.2/2 = 0.1, and re-normalize all the weights in
the condition as described in chapter 4.
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7.3.2 Predicate Deletion.

A predicate is eliminated from the query condition if its weight falls below a threshold during re-
weighting since its contribution becomes negligible, the remaining weights are re-normalized. For
example, if we use average weight re-weighting (discussed in section 7.3.3) in figure 7.3, then the
new weight for attribute a is: max(0, 0.7+0.3−0.8−0.6)

4 ) = max(0,−0.1) = 0. Therefore, predicate
a ∼= â is removed.

7.3.3 Predicate Re-weighting

Chapter 4 discusses how the scores of the similarity predicates in the query condition are combined
in the presence of weights. Modifying weights is one of the major mechanisms to improve the ranking
of results. The goal of the query re-weighting techniques is to find the optimal relative weights
among different components of the system. Formally, let p1, p2, ..., pn be the similarity predicates
used to compute the corresponding similarity scores s1, s2, ..., sn, and wopt

1 , wopt
2 , . . . , wopt

n be the
weights such that

∑n
i=1 wopt

i si captures the user’s notion of similarity of a tuple to the users query.
Let w0

1, w
0
2, . . . , w0

n be the weights initially associated with these predicates (for simplicity the
system starts with equal weights for all predicates). Re-weighting modifies the weights associated
with the predicates based on the user’s feedback. The weights after the i-th iteration of the
feedback process are denoted by wi

1, w
i
2, . . . , wi

n. Re-weighting converges the weights associated
with predicates to the optimal weights: limi−→∞ vi

j = vopt
j . For each predicate, the new weight is

computed based on the similarity score of all attribute values for which relevance judgments exist.
In section 7.2.2 we described how a Scores table is derived from the Answer table and Feedback
table values by computing the scores for those attribute values for which feedback judgments are
present. Each score is computed by applying its corresponding predicate to the value.

To develop the intuition of the query re-weighting strategy used, let us restrict ourselves to a
simple situation in which a similarity condition for a query Q consists of two predicates: X and
Y . The approach described in this simple context can be generalized to multiple predicates in a
straightforward fashion.

For a query consisting of two predicates X, Y , there exist weights wopt
x , and wopt

y such that
wopt

x sx + wopt
y sy captures the similarity between a tuple t and the query condition from the user’s

viewpoint. The user’s notion of similarity can be visualized as a line Lopt, illustrated in Figure 7.6,
defined by the following equation:

wopt
x × sx + wopt

y × sy = δ (7.1)

where δ is a threshold so that any object whose similarity is greater than δ (i.e., all tuples above
the line Lopt) will be ranked as relevant by the user. Figure 7.6 illustrates the similarity space with
respect to predicates X and Y . Similarity values for predicates X and Y are in the range [0,1]
where 1 is the highest similarity and 0 is the lowest similarity. The slope of Lopt represents the
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Figure 7.6: Similarity Space

relative importance of X and Y based on user judgment.
The corresponding model used by the system to compute similarity to the query at any given

instance (i.e., the weights wx and wy) can also be visualized as a line in the similarity space. Let
Li represent the line after the i-th iteration of query refinement, where Li is:

wi
x × sx + wi

y × sy = δ1 (7.2)

Consider the line BD joining the intercepts made by Lopt and Li with line Y = 1 and X = 1
respectively in Figure 7.6(a). It can be shown that the slope of BD, that is, −CD

BC , lies in between
the slope of Li and that of Lopt. As a result, if the weights during the i-th iteration are modified
such that the slope of Li+1 is equal to the slope of BD, then eventually Li will converge to Lopt.
To compute the slope of BD, the system attempts to estimate the lengths of CD and BC.

Such a re-weighting strategy, however, requires the system to know the slope −CD
BC . Since the

system does not know Lopt (and hence cannot determine the points B and D a priori), it attempts
to estimate the value of the lengths CD, and BC in order to estimate the slope −CD

BC using the
feedback about the relevance of the objects from the user.

To understand how the strategy works, notice that during an iteration, the system retrieves
objects above line Li (that is, in 4ACD) as relevant to the query. Of these objects, the user will
mark only those objects that also lie within 4BCE as relevant. That is, all objects within the
region BCDF will be marked as relevant to the query by the user. Based on this observation, many
different strategies to estimate the slope CD

BC can be developed. Two such strategies are explored
next.
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7.3.3.1 Minimum Weight Strategy

Let RLx and RLy be the set of values marked relevant by the user for predicates X and Y . Let

∆X = min
vj∈RLx

{sx(vj)} (7.3)

∆Y = min
vj∈RLy

{sy(vj)} (7.4)

where sx(vj) and sy(vj) are the similarity scores between vj and the corresponding similarity
predicate. ∆X and ∆Y are used to estimate the points B and D in figure 7.6(a). That is, point B

corresponds to (∆X, 1) and the point D corresponds to (1, ∆Y ). As a result,

slope of line BD = −
(

1−∆Y

1−∆X

)
(7.5)

Since the slope of the line Li+1 is equal to the slope of line BD and given the constraints of the
summation of the weights wi+1

x + wi+1
y = 1, the weights at the i + 1-th iteration are updated as

follows:

wi+1
x = α× wi

x + β × 1−∆Y

2−∆X −∆Y
(7.6)

wi+1
y = α× wi

y + β × 1−∆X

2−∆X −∆Y
(7.7)

where α and β (α + β = 1) control how aggressively we modify the query condition. Using the
Scores table of figure 7.2, we compute the new weight for P (b) as: ∆b = mini∈relevant(b)(P (bi)) =
min(0.8, 0.9, 0.8) = 0.8, similarly, ∆c = 0.9. If we take α = 0 and β = 1, the new weights are:
wi+1

b = 1−.9
2−.9−.8 = 1

3 , and wi+1
c = 1−.8

2−.9−.8 = 2
3 . We ignore non-relevant judgments for this strategy.

7.3.3.2 Average Weight Strategy

This approach estimates the lengths of BC and CD by averaging the scores of relevant values with
respect to individual predicates X and Y . Consider Figure 7.6(a), all points above lines Xcut and
Ycut are very similar to the query based on features X and Y respectively. Given that Xcut and
Ycut are introduced at equal similarity thresholds, this approach estimates that the scores of objects
similar to the query on individual predicates X and Y that are also relevant to the overall query
are proportional to the size of the regions CDIJ and BCGH respectively and are proportional to
the lengths of CD and BC. As a result,

slope of line BD = −

P
vj∈RLx

{sx(vj) | sx(vj)>Xcut }
|RLx|P

vj∈RLy
{sy(vj) | sy(vj)>Ycut }

|RLy |

(7.8)

The strategy further extends to accommodate multiple levels of relevance (e.g., highly relevant,
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very relevant, and relevant, see section 7.2) that the user may associate with relevant values. In
such a case, the user’s model can be visualized in the similarity space as a sequence of parallel
lines each corresponding to a different level of relevance as shown in Figure 7.6(b). Lopt

rel and Lopt
v.rel

represent relevant and very relevant thresholds respectively. To incorporate the similarity scores of
values with their corresponding relevance levels to estimate the slope, let:

relX =

∑
vj∈RLx

{relevance(vj)× sx(vj) | sx(vj) > Xcut }
| RLx | (7.9)

relY =

∑
vj∈RLy

{relevance(vj)× sy(vj) | sy(vj) > Ycut }
| RLx | (7.10)

where relevance(vj) is the relevance level.

slope of line BD = −relX
relY

(7.11)

The weight update policy is:

wi+1
x = α× wi

x + β × relX
relX + relY

(7.12)

wi+1
y = α× wi

y + β × relY
relX + relY

(7.13)

Using the data from figure 7.2 (and α = 0, β = 1), we compute the new weight for P (b) as: relb =P
bi∈RL(b) P (bi)

|RLb| = 0.8+0.9+0.8−0.3
4 = 0.55, similarly, relc = 0.9. Then wi+1

b = .55
.55+.9 = .55

1.45 = 0.38 and
wi+1

b = .9
.55+.9 = .9

1.45 = 0.62.

In both strategies, if there are no relevance judgments for any tuples involving a predicate, then
the original weight is preserved as the new weight. These strategies also apply to predicates used
as a join condition such as shown in the example of figure 7.3.

7.4 Intra-Predicate Query Refinement

In intra-predicate refinement, the similarity predicates are modified in several ways. Predicates, in
addition to a single query point (value), may use a number of points as a query region, possibly
with its own private, attribute-specific similarity aggregation function [125]. For example, multiple
points are aggregated with a function λ (figure 7.1) with weights for each query point.

Intra-predicate refinement is by its very nature domain dependent, hence each user-defined type
specifies its own scoring and refinement functions to operate on objects of that type. We present
some strategies in the context of example 3.2.1 and describe how they apply to the close to refine

function. As described above, the parameters to this function are a list of values and corresponding
relevance judgments: close to refine(list〈location value, relevance〉). In the context of figure 7.2,
let attribute b be of type location, and P be the close to function, then we invoke close to refine(
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Figure 7.7: Intra-predicate Refinement

〈b1, 1〉, 〈b2, 1〉, 〈b3, 1〉, 〈b4,−1〉), since those are the tuples the user gave feedback on for attribute
b. Figure 7.1 illustrates the following approaches for this type:2

7.4.1 Distance Metric Selection

Distance metric selection (DMS) refers to determining which of a set of distance metrics is most
consistent with the supplied feedback. For example, any Lp metric can be used, not just Euclidean
distance (L2). The close to function uses Euclidean distance (L2), but Manhattan distance (L1)
can also be used for geographic locations. We compute the L1 and L2 based distances between
all relevant values (b1, b2, b3) and average them. The metric that gives the least average distance
is chosen as the distance metric, since it results in the highest scores, on average, for the relevant
values.3 Other distance metrics may be similarly tested for fit.

7.4.2 Query Re-weighting

Query re-weighting assigns a weight to each dimension of the query vector. The weight assigned
is inversely proportional to the standard deviation of feature values of the relevant objects along
that dimension. Intuitively, among the relevant objects, the higher the variance along a dimension,
the lower the significance of that dimension [78, 134]. For example, if the distance function is
Euclidean, the function changes from (7.14) to (7.15):

OldDistance(C, P ) =
m∑

j=1

(C[j]− P [j])2 (7.14)

NewDistance(C, P ) =
m∑

j=1

1
σj

(C[j]− P [j])2 (7.15)

where σj is the standard deviation of feature values of the relevant objects along dimension j.
2Note that this discussion uses distance functions rather than similarity functions since it is more natural to visual-

ize the distance between points than their similarity; distance is converted to similarity as presented in example 3.2.1.
3Although this algorithm is O(n2), in practice there are very few (<20) feedback values simplifying this problem.
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Figure 7.7 (a) shows how the distance function under re-weighting changes its shape. The figure
shows contours representing equidistant ranges from the new query which have now become ovals
rather than circles.

Following our example, if b1.x, b2.x, and b3.x are similar (i.e., small variance), and b1.y, b2.y, and
b3.y are different (i.e., larger variance), we infer that the x dimension captures the users intention
better, and set wx = 1

std dev(bx) and wy = 1
std dev(by) , and then re-normalize the weights such that

wx + wy = 1.

7.4.3 Query Point Movement

The Query point movement (QPM) approach is based on Rocchios method for vector space mod-
els [130, 134], it uses a single multidimensional object per domain as the query value. When the
user uses multiple examples to construct the query, the centroid is used as the single point query.
Similarly, at each iteration of query refinement, a new centroid is formed by combining the old query
value (centroid) with the weighted centroid of the values the used marked relevant and non-relevant.
The weights are obtained from the level of relevance provided by the user. Let v1, v2, . . . vn denote
n vectors marked relevant by the user and u1, u2, . . . um denote m vectors marked non-relevant by
the user, and let rvi and rui be their corresponding levels of relevance. Let p[j] denote the value of
point p along the j-th dimension of the space, 1 ≤ j ≤ l, l being the dimensionality of the space.
The new weighted centroid Cnew is defined as:

Cnew[j] = α× Cold[j] + β ×

n∑

i=1

rvi × vi[j]

n∑

i=1

rvi

− γ ×

m∑

i=1

rui × ui[j]

n∑

i=1

rui

(7.16)

Where Cold is the old centroid. The constants α, β, and γ regulate the speed at which the query
point moves towards relevant values and away from non-relevant values. By moving the query point
closer to relevant values and away from non-relevant values, it better captures the users intentions.

Figure 7.7 (a) shows how the query point changes location in the query point movement ap-
proach. The figure shows contours representing equidistant ranges from the new query.

In our example, the query value b̂ migrates to b̂’ by: b̂’ = α × b̂ + β ×
P

(b1,b2,b3)
3 − γ ×

P
(b4)
1 ,

α + β + γ = 1

7.4.4 Query Expansion

Unlike the query point movement approach, the query expansion (QEX) approach uses multiple
objects per attribute as a multi-point query [125, 169]. When the user marks several points as
relevant, the query processor selects a small number of good representative points to construct the
multi-point query by clustering the set of relevant points and using the centroids of the clusters as
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the representatives. Possible algorithms to cluster the points include the doubling algorithm [31],
k -means algorithm, or even the technique presented in FALCON [169].

The representative points are used to construct the new multi-point query. Notice that the
query from the previous iteration does not directly affect the new query. But in constructing the
query, objects deemed relevant during previous iterations are also incorporated into the clusters.
Implicitly, relevant points get added while the non-relevant ones get dropped as the refinement
process moves from one iteration to the next.

The weight for each cluster centroid in this approach is proportional to the number of relevant
objects in the corresponding cluster. The weights are added to the multi-point query along with the
corresponding representatives. The distance from the multi-point query is defined as the weighted
combination of the individual distances from the representatives. Figure 7.7 (b) shows the distance
function for multi-point queries. The dashed lines are contours representing equidistant ranges for
each of the representatives while the solid lines are contours representing equidistant ranges from
the entire multi-point query.

7.4.5 Similarity Join Considerations

Predicates used as similarity join conditions do not have constant query points, therefore the
techniques we described that rely on query points do not apply to join predicates, but the remaining
still do. Intra-predicate query point movement and query expansion rely on a known set of query
values and therefore do not apply, but query re-weighting and distance metric selection still apply.

7.5 Evaluation

Similarity retrieval and query refinement represent a significant departure from the existing access
paradigm (based on precise SQL semantics) supported by current databases. Our purpose in this
section is to show some experimental results, and illustrate that the proposed access mechanism
can benefit realistic database application domains. We study our systems various components, and
present a realistic sample e-commerce catalog search application to validate the approach.

7.5.1 Methodology

To evaluate the quality of retrieval we establish a baseline ground truth set of relevant tuples.
This ground truth can be defined objectively, or subjectively by a human users perception. When
defined subjectively, the ground truth captures the users information need and links the human
perception into the query answering loop. In our experiments we establish a ground truth and then
measure the retrieval quality. We measure the quality of retrieval with precision and recall [137].
Precision is the ratio of the number of relevant tuples retrieved to the total number of retrieved
tuples: precision = |relevant

T
retrieved|

|retrieved| , while recall is the ratio of the number of relevant tuples

retrieved to the total number of relevant tuples: recall = |relevant
T

retrieved|
|relevant| . We compute precision
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and recall after each tuple is returned by our system in rank order.
The effectiveness of refinement is tied to the convergence of the results to the users information

need. Careful studies of convergence have been done in the past in restricted domains, e.g., Roc-
chio [130] for text retrieval, MARS [134, 125], Mindreader [78], and FeedbackBypass [11] for image
retrieval, and FALCON [169] for metric functions. We believe (and our experiments will show)
that these convergence experiments carry over to the more general SQL context in which we are
exploring refinement.

7.5.2 Numeric Dataset Experiment

For this experiment, we used two datasets. One is the fixed source air pollution dataset from
the AIRS4 system of the EPA and contains 51,801 tuples with geographic location and emissions
of 7 pollutants (carbon monoxide, nitrogen oxide, particulate less than 2.5 and 10 micrometers,
sulfur dioxide, ammonia, and volatile organic compounds). The second dataset is the US census
data with geographic location at the granularity of one zip code, population, average and median
household income, and contains 29470 tuples. We used several similarity predicates and refinement
algorithms.

For the first experiment we implemented a similarity predicate and refinement algorithm based
on FALCON [169] for geographic locations, and a query point movement and dimension re-weighting
for the pollution vector of the EPA dataset. We started with a conceptual query looking for a specific
pollution profile in the state of Florida. We executed the desired query and noted the first 50 tuple
as the ground truth. Next, we formulated this query in 5 different ways, similar to what a user
would do, retrieved only the top 100 tuples, and submitted tuple level feedback for those retrieved
tuples that are also in the ground truth. Here we performed 5 iterations of refinement. Figure 7.8a)
shows the results of using only the location based predicate, without allowing predicate addition.
Similarly figure 7.8b) shows the result of using only the pollution profile, without allowing predicate
addition. Note that in these queries feedback was of little use in spite of several feedback iterations.
In figure 7.8c) we instead used both predicates but with the default weights and parameters, notice
how the query slowly improves. Figure 7.8d) starts the query with the pollution profile only, but
allowing predicate addition. The predicate on location is added after the first iteration resulting
in much better results. Similarly figure 7.8e) starts only with the location predicate. The initial
query execution yields very low results, but the pollution predicate is added after the initial query
resulting in a marked improvement. In the next iteration, the scoring rule better adapts to the
intended query which results in another high jump in retrieval quality. It is sufficient to provide
feedback on only a few tuples, e.g., in this query, only 3 tuples were submitted for feedback after
the initial query, and 14 after the first iteration. The number of tuples with feedback was similarly
low (5%-20%) in the other queries.

In the second experiment, we use a join query over the EPA and census datasets. Notice that
we cannot use the location similarity predicate from the first experiment since the FALCON [169]

4http://www.epa.gov/airs
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Figure 7.8: Precision–recall Graphs for several Iterations, various Refinement Strategies
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based similarity predicate is not joinable. This is because it relies on a set of “good points” which
must remain the same over the execution of a query iteration. If we change the set of good points to
a single point from the joining table in each call, then this measure degenerates to simple Euclidean
distance and the refinement algorithm does nor work. Figure 7.8f) shows the results of a query
where the census and EPA datasets are joined by location, and we’re interested in a pollution level
of 500 tons per year of particles 10 micrometers or smaller in areas with average household income
of around $50,000. We constructed the ground truth with a query that expressed this desire and
then started from default parameters and query values.

7.5.3 Multidimensional Dataset Experiment

For this experiment, we use the Corel image feature collection.5 The collection consists of 68,040
images with a brief textual description for each image. We extracted color (4× 8 color histogram)
and texture (16-dimensional co-occurrence texture) features (see appendix A) for each image and
used a text vector model [137] for its text description. Each extracted feature corresponds to
an attribute of the relation storing the Corel images. For a given query type (e.g., a color or a
color-texture query), we select an example query Q randomly from the dataset and retrieve the
top 50 answers. The answers are computed based on fixed intra-predicate similarity functions
and a random choice of predicate weights (for multi-predicate queries).6 We refer to this set as
the relevant set relevant(Q). We construct the starting query by slightly disturbing Q (i.e., by
choosing a query point close to Q), setting equal predicate weights and retrieving the top 100
answers which become the retrieved set retrieved(Q). All tuples in retrieved(Q) that are also in
relevant(Q) are submitted as relevant feedback to the system, which refines the query based on
the feedback, evaluates the refined query, and returns the new answers. This process is repeated
over several iterations. Precision and recall are computed using relevant(Q) and retrieved(Q) as
discussed above, all measurements are averaged over 20 queries.

We first demonstrate the effectiveness of the intra-predicate strategies discussed in section 7.4
by executing a single predicate query (a color-similarity query, i.e., request for images similar to a
given image in terms of color). We use the L1 metric as the distance function (equivalent to the
histogram intersection similarity metric [115]), and query expansion for query point selection. Fig-
ure 7.9 shows that the quality of results improves from one iteration to the next (i.e., retrieved(Q)
approaches relevant(Q)) as the system learns the query points and the dimensional weights that
capture the users information need. We next evaluate the inter-predicate reweighting techniques
by executing a multi-predicate conjunction query (a color-and-texture query, i.e., request for im-
ages similar to a given image in terms of both color and texture). We use the minimum weight
strategy for inter-predicate re-weighting, and query expansion and re-weighting for intra-predicate
refinement. Figure 7.10 shows that inter-predicate reweighting, in conjunction with intra-predicate
refinement techniques, improves the retrieval effectiveness of multi-predicate queries significantly.

5Available online at http://kdd.ics.uci.edu.
6The weights chosen capture the user perception for the query; a goal of query refinement is to learn those weights.
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Figure 7.11 compares the two inter-predicate weight selection techniques for the same query (color-
and-texture query). In figure 7.11 we compare the ground truth and ranked answer lists with
the normalized recall metric7 discussed in appendix B to evaluate the inter-predicate re-weighting
strategies of section 7.3. Figure 7.11 shows how refinement converges, the 4th iteration shows some
over-fitting which is corrected in the 5th iteration. Figure 7.12 shows the effect of predicate addi-
tion to a query. The starting query consists of only a text predicate (e.g., description similar-to
some description(s)). Based on the feedback, the system decides that the users information need
also involves visual similarity and adds an image predicate (i.e., color similar-to some image(s) and

texture similar-to some image(s)) to the query, resulting in increased retrieval effectiveness.

7.5.4 Sample E-Commerce Application of Similarity Retrieval and Refinement

To illustrate a realistic application, we built a sample E-commerce application on top of our query
refinement system, to explore the utility of our model in this context. This application is described
in detail in chapter 9. We explore how the granularity (i.e., tuple vs. column level feedback) and
the amount of feedback affect the quality of results.

7.5.4.1 Example Queries

We explore our system through the following conceptual query: “men’s red jacket at around
$150.00”. We browsed the entire collection and constructed a set of relevant results (ground truth)
for the query, we found 10 items out of 1747 to be relevant and included them in the ground truth.
Several ways exist to express this query, we try the following:

1. Free text search of type, short and long description for “men’s red jacket at around $150.00”.
2. Free text search of type with “red jacket at around $150.00” and gender as male.
3. Free text search of type with “red jacket”, gender as male, and price around $150.00.
4. Free text search of type with “red jacket”, gender as male, price around $150.00, and pick a

picture of a red jacket which will include the image features for search.

7.5.4.2 Evaluation

We ran all four queries with feedback to obtain a set of precision/recall values which are shown in
table 7.1. The table shows precision values for several recall percentiles. We show one refinement
iteration for queries 1 and 2, and two iterations for queries 3 and 4. The refined answers are
an improvement of the original results in general, and specifically for Query 4, as can be seen in
table 7.1.
Effect of Feedback Granularity on Refinement Quality. Our framework provides for two
granularities of feedback: tuple and column level. In tuple level feedback the user judges the tuple
as a whole, while in column level she judges individual attributes of a tuple. Column level feedback
presents a higher burden on the user, but can result in better refinement quality. This is shown in

7Normalized recall measures the similarity between two ranked lists, it returns a similarity value in the range [0,1].
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Query 1 precision Query 2 precision Query 3 precision Query 4 precision
Recall initial 1st initial 1st initial 1st 2nd initial 1st 2nd

results ref results ref. results ref. ref. results ref. ref.

10% 0.07 1 0.25 1 0.17 1 1 1 1 1
20% 0.11 0.15 0.33 1 0.29 1 1 0.6 1 1
30% 0.15 0.19 0.38 1 0.20 0.75 1 0.75 1 1
40% 0.13 0.19 0.44 0.80 0.25 0.57 1 0.44 1 1
50% 0.15 0.21 0.36 0.45 0.26 0.56 1 0.42 0.71 1
60% 0.13 0.21 0.21 0.22 0.25 0.55 0.67 0.43 0.60 0.75
70% 0.11 0.13 0.18 0.20 0.25 0.47 0.64 0.47 0.64 0.78
80% 0.12 0.09 0.18 0.17 0.24 0.32 0.35 0.5 0.57 0.5
90% 0.15 0.17 0.20 0.35 0.38 0.39 0.53
100% 0.11 0.17 0.3 0.23 0.23 0.29

Table 7.1: Comparison of Different Queries and their Refinement
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figures 7.13a) which shows tuple level feedback and 7.13b) which shows column level feedback. For
these figures we used 5 different queries with their ground truth, gave feedback on exactly 2 tuples
and averaged the results. For tuple level feedback, 2 entire tuples were selected, for column level
feedback, we chose only the relevant attributes within the tuples and judged those. As expected,
column level feedback produces better results.
Effect of Amount of Feedback Judgments on Refinement Quality. While in general the
refinement system adapts better to the users information need when it receives more relevance
judgments, in practice this is burdensome to users. The amount of feedback may vary from user to
user; here we explore how the amount of feedback affects the retrieval quality.

Empirically, even a few feedback judgments can improve query results substantially. We explore
the same 5 queries from above and give tuple level feedback for 2, 4 and 8 tuples. The results
are shown in figures 7.13a,c,d) respectively. More feedback helps improve the results, but with
diminishing returns, in fact column level feedback for 2 tuples is competitive with tuple level
feedback for 8 tuples. Based on these observations, we conclude that users need not expend a huge
effort in feedback to improve their answers.

7.6 Related Work

While there is much research on improving the effectiveness of queries in specific applications, we are
not aware of work that addresses generalized query refinement in general purpose SQL databases.
The work most related to our research is relevance feedback and query refinement in multimedia
and Information Retrieval (IR) systems, and cooperative databases or query formulation tools.

Traditionally, similarity retrieval and relevance feedback have been studied for textual data in
the IR community and have recently been generalized to other domains. IR has developed numerous
models for the interpretation of similarity [137, 8], e.g., Boolean, vector, probabilistic, etc. models.
IR models have been generalized to multimedia documents, e.g., image retrieval [134, 125, 115, 52]
uses image features to capture aspects of the image content, and adapts IR techniques to work on
them.

Query refinement through relevance feedback has been studied extensively in the IR litera-
ture [137, 8, 130] and has recently been explored in multimedia domains, e.g., for image retrieval
by Mindreader [78], MARS [134, 125], and Photobook [103], and for time-series retrieval [82], among
others. FALCON [169] uses a multi-point example approach similar to our multi-point approach
and generalizes it to any suitably defined metric distance function, regardless of the native space.
FALCON assumes that all examples are drawn from the same domain and does not handle multiple
independent attributes. Under our framework, we consider FALCON as a non-joinable algorithm
since it is dependent on the good set of points remaining constant during a query iteration. FAL-
CON however fits perfectly in our framework as an intra-predicate algorithm for selection queries
as we discussed in section 7.4 and showed in our experiments. In [98] the authors implement query
refinement by layering a text vector model IR system with relevance feedback on top of a SQL
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database; our work is different since we support arbitrary data types and refinement across them.
Given the applicability of refinement to textual and multimedia data, our work takes the next step,
extending refinement to general SQL queries where user-defined functions implement similarity and
refinement models for data-types such as text, image, audio, time-series, etc. [133] focuses on ad-
justing relative weights among different features. The model for reweighting used is similar to our
counting approach. MindReader [78] also applied a query modification technique which is similar
to our intra-predicate re-weighting approach. It focuses on a single multidimensional space, and
its goal is to find a single representative point that minimizes the stress based on the Euclidean
distance function. A similar technique has been used by Hull [76] (Local LSI). Hull attempts to find
the correlation among relevant vectors by applying singular value decomposition (SVD) to relevant
vectors and creating a new relevant space. Then all or a subset of vectors are mapped into this new
space. New vectors that fit in the new space are considered to be relevant. A disadvantage of this
approach is that SVD is an extremely expensive computation. The difference between Local LSI
and MindReader is that Local LSI is applied to text document collections which are highly multi-
dimensional while MindReader is targeted to two-dimensional map data. In [37], Cox et. al. use a
different strategy to learn user’s intention. They focus on a probabilistic model to learn from the
user response. The system does not return back an answer set to the user after each iteration of the
user response. Instead, the system poses a question to the user. The question is supposed to be the
most discriminating criteria so that the number of questions needed to be asked is minimum. This
approach is useful for a user to find a starting sample to feed to another retrieval system. But if
the user already has sample data that he can directly feed to other systems, the approach imposes
a burden on the user to go through the iteration. MEGA follows the same approach utilizing feed-
back at each iteration to determine which dimensions in a vector are the most discriminating. At
each iteration, it returns results that will provide it the best discriminatory power when feedback
is provided, these are not necessarily the best results for the query.

Usability and usefulness of query refinement is of great importance to our work. Relevance
feedback and query refinement are generally highly praised in the IR community [137, 8]. Despite
many advances, a recent study [80] on its use in web search engines suggests that users do not rely
heavily on relevance feedback tools during search. Users reformulate their queries manually about
twice as frequently as by using provided feedback tools. Two explanations are offered, (1) manual
query reformulation is easy for textual queries and therefore does not benefit much from relevance
feedback, and (2) some evidence points towards a usability problem unrelated to the technology
itself. We distinguish ourselves from this perspective since our work is independent of any specific
user interface, and manual refinement of a query with complex attributes (e.g., visual, geographic,
etc.) is significantly more difficult than a textual query, thus benefiting from our approach.

Cooperative databases seek to assist the user to find the desired information through interac-
tion. VAGUE [106], in addition to adding distance functions to relational queries, helps the user
pose imprecise queries. While VAGUE does not support query refinement, in a sense it out-sources
the decision stage of refinement to the user, it examines a user query and for each distance (similar-
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ity) predicate, asks the user for the correct interpretation, including weights, and then proceeds to
execute the query. A related interface, FLEX [107] refines precise queries from a vague description
to a specific query suitable for execution. The goal is not to refine the query based on the value
of answers, but instead to formulate queries and resolve conflicts regarding the number of results.
The Eureka [143] browser is a user interface that lets users interactively manipulate the conditions
of a query with instantly update the results. The goal of the CoBase [34] cooperative database
system is to avoid empty answers to queries. It uses Type Abstraction Hierarchies (TAHs) and
relaxation operators to relax query conditions and expand the answer set. CoBase is different from
our approach: relaxation operators influence existing query conditions but cannot add new ones or
change their interpretation based on the value of query results, relaxation via TAHs roughly corre-
sponds to decreasing the similarity threshold in our framework and using query point movement.
In [83], the authors consider a succession of manually modified precise queries to be a browsing
session (session query) and focus on optimizing the computation of results. Agrawal [2] proposes
a framework where users submit preferences (feedback) and explains how they may be composed
into compound preferences.

7.7 Conclusions

The Intra- and Inter-predicate strategies discussed effectively span the whole range of action in
our design space, from single predicates to balancing multiple predicates, to adding new predicates
to the query. Adding predicates also addresses cases where the initial predicates are too few and
the query needs to be focused and tightened. Finally we used both tuple level and attribute level
feedback and showed how they can coexist. A practical system implementation may implement all
or some of these techniques, such an implementation can then be classified using our design space.
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Chapter 8

Query Refinement Processing

8.1 Introduction

Top-k selection queries are becoming common in many modern-day database applications. Unlike
in a traditional relational database system (RDBMS) where a selection or join query consists of a
precise condition and the user expects to get back the exact set of objects that satisfy the condition,
in top-k queries, the user specifies a similarity or distance criteria that may include target values
for certain attributes, and does not expect exact matches to these values in return. Instead, the
result to such queries is typically a ranked list of the “top k” objects that best match the given
attribute values.

An important aspect of top-k queries is user subjectivity [106, 45]. To return “good quality”
answers, the system must understand the user’s perception of similarity, i.e., the relative importance
of the attributes/features1 to the user. The system models user perception via the distance functions
(e.g., Euclidean in the above example) and the weights associated with the features [46, 27, 122,
33]. At the time of the query, the system acquires information from the user based on which it
determines the weights and distance functions that best capture the perception of this particular
user and instantiates the model with these values. Note that this instantiation is done at query
time since the user perception differs from user to user and from query to query. Once the model
is instantiated, we retrieve, based on the model, the top answers by first executing a k nearest
neighbor (k-NN) algorithm on each individual feature2 and then merging them to get the overall
answers [115, 109, 46, 45].

As discussed in chapters 6 and 7, due to the subjective nature of top-k queries, the answers
returned by the system to a user query usually do not satisfy the user’s need right away. In this
case, the user would like to refine the query and resubmit it in order to get back a better set of
answers.

While there has been a lot of research on improving the effectiveness of query refinement as well
1We use the terms attribute and feature interchangeably in this chapter.
2In this chapter, we assume that all the feature spaces are metric and an index (called the Feature-index or F-

index) exists on each feature space. A F-index is either single dimensional (e.g., B-tree) or multidimensional (e.g.,
R-tree) depending on the feature space dimensionality.
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as on evaluating top-k queries efficiently, there exists no work that we are aware of on how to support
refinement of top-k queries efficiently inside a DBMS. We explore such approaches in this chapter.
A naive approach to supporting query refinement is to treat a refined query just like a starting query
and execute it from scratch. We observe that the refined queries are not modified drastically from
one iteration to another; hence executing them from scratch every time is wasteful. Most of the
execution cost of a refined query can be saved by appropriately exploiting the information generated
during the previous iterations of the query. We show how to execute subsequent iterations of the
query efficiently by utilizing the cached information. Note that since the query changes, albeit
slightly, from iteration to iteration (i.e., the query points and/or the weights/distance functions are
modified), we, in general, cannot answer a refined query entirely from the cache, i.e., we still need to
access some data from the disk. Our technique minimizes the amount of data that is accessed from
disk to answer a refined query. Furthermore, our technique does not need to examine the entire
cached priority queue to answer a refined query, i.e., it explores only those items in the cache that
are necessary to answer the query, thus saving unnecessary distance computations (CPU cost).3

Our experiments on real-life datasets show that our techniques improve the execution cost of the
refined queries by up to two orders of magnitude over the naive approach.

A secondary contribution of this chapter is a technique to evaluate multipoint queries efficiently.
In order to support refinement, we need to be able to handle multipoint queries as shown in the
MARS and FALCON papers [122, 27, 169]. Such queries arise when the user submits multiple
examples during feedback. We first formally define the multipoint query and then develop an
efficient k-NN algorithm that computes the k nearest neighbors to such queries. Our experiments
show that our algorithm is more efficient compared to the multiple expansion approach proposed
in FALCON [169] and MARS [125].

8.2 The Model

In top-k selections and joins, the user poses a query Q by providing a similarity criteria between
values (similarity function), target query values (for selection attributes), and by specifying the
number k of matches desired. The target values can be either explicitly specified by the user or are
extracted from a user supplied example. We refer to Q as the ‘starting’ query. The starting query is
then executed and the top k matches are (incrementally) returned. If the user is not satisfied with
the answers, she provides feedback to the system either by submitting interesting examples or via
explicit weight modification. Based on the feedback, the system refines the query representation
to better suit the user’s information need. The ‘refined’ query is then evaluated and the process
continues for several iterations until the user is fully satisfied. When the user is satisfied with the
answers returned, she can request for additional matches incrementally. The process of feedback
and requesting additional matches can be interleaved arbitrarily. We now discuss how each object

3Our techniques are independent of the way the user provides feedback to the system, i.e., it does not matter
whether she uses the QBE (i.e., “give me more like this”) interface or the explicit weight modification interface.
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Symbol Definition Symbol Definition

S Multidimensional space dS Dimensionality of S

O A database object/record Q User query (multipoint)

nQ Number of points in Q PQ Set of nQ points in Q

P
(i)
Q The ith point in PQ WQ Set of nQ weights associated with PQ

w
(i)
Q ith weight inWQ (associated with P

(i)
Q ) µQ

(j) Weight (intra-feature) for jth dimension of S

DQ Distance function for Q DQ(Q, O) Overall distance between Q and O

QPM Query Point Movement QEX Query Expansion

FR Full Reconstruction Approach SR Selective Reconstruction Approach

LBD Lower Bounding Distance BR Bounding Rectangle

Table 8.1: Summary of Symbols, Definitions and Acronyms

is represented in the database (the object model), how the user query is represented (the query
model), how the retrieval takes place (the retrieval model) and how refinement takes place (the
refinement model).

8.2.1 Object Representation

Objects are vectors in a multidimensional space. Let S be a dS dimensional space, we view an
object O as a point in this multidimensional space, i.e., O is a dS dimensional vector. Many image
retrieval systems represent image features in this way. How the objects O are obtained (i.e., the
feature extraction) depends on the application (e.g., in example 1.0.1, special image processing
routines are used to extract the color and texture from the image).

8.2.2 Query Representation

A query is represented as a distance function DQ that computes the distance between any object
and a set PQ of query objects, all from the multidimensional space S. For selection queries, PQ is
a set of query objects supplied by the user, or manipulated via query refinement. For join queries,
PQ iterates through the values of one of the relations being joined, one value at a time. The
distance function DQ associates weights µQ with each dimension of the space S, and a weight wQ

with each query point. The reason for allowing multiple points in the query is that for selection
queries, during refinement, the user might submit multiple examples to the system as feedback
(those that she considers relevant) leading to multiple points in the space (cf. section 8.2.3). We
refer to such queries as multipoint queries. The user may also specify the relative importance of the
submitted examples, i.e., the importance of each example in capturing her information need (e.g.,
relevance levels in MARS [132], “goodness scores” in Mindreader [78]). To account for importance,
we associate a weight with each point of the multipoint query. Note that allowing multiple query
points does not affect the interpretation of joins where we substitute one at a time, the values from
one of the relations as a query point. We now formally define a multipoint query:

Definition 8.2.1 (Multipoint Query) A multipoint query Q = 〈nQ,PQ,WQ,DQ〉 for the space
S consists of the following information:
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• The number nQ of points in Q.

• A set of nQ points PQ = {PQ
(1), ..., PQ

(nQ)} in the dS-dimensional feature space S.

• A set of nQ weights WQ = {wQ
(1), ..., wQ

(nQ)}, the ith weight wQ
(i) being associated with the

ith point PQ
(i) (1 ≥ wQ

(i) ≥ 0,ΣnQ

i=1wQ
(i) = 1).

• A distance function DQ which, given a point O in the space S, returns the distance between
the query and the point. To compute the overall distance, we use a point to point distance
function DQ which, given two points in S, returns the distance between them. We assume
DQ to be a weighted Lp metric, i.e., for a given value of p, the distance between two points
T1 and T2 in S is given by:4

DQ(T1, T2) = [ΣdS
j=1µQ

(j)(|T1[j]− T2[j]|)p]
1/p

(8.1)

where µQ
(j) denotes the weight associated with the jth dimension of S. (1 ≥ µQ

(j) ≥
0, ΣdS

j=1µQ
(j) = 1). DQ specifies which Lp metric to use (i.e., the value of p) and the val-

ues of the dimension weights. We use the point to point distance function DQ to construct
the aggregate distance function DQ(Q,O) between the multiple query points (PQ) and the ob-
ject O (in S) DQ(Q,O) is the aggregate of the distances between O and the individual points
PQ

(i) ∈ PQ.

DQ(Q, O) =
nQ∑

i=1

wQ
(i)DQ(P(i)

Q , O) (8.2)

We use weighted sum as the aggregation function but any other function can be used as long
as it is weighted and monotonic [46].

The choice of DQ (i.e., the choice of the Lp metric) and the intra-feature weights captures the
user perception within the space. We next describe how we choose the weights/metric.

8.2.3 Query Refinement

The intra predicate query refinement approaches described in section 7.4 apply to the multipoint
queries used here. Specifically, we use the query point movement (QPM) and query expansion
(QEX) approaches, both in conjunction with re-weighting of dimensions as described in section 7.4
for the remainder of this chapter. QPM converts the set PQ to a centroid and changes its position
to capture the query. QEX adds or removes points from the set PQ. Re-weighting modifies the
weights in WQ and applies to selection and join queries. Note that how the query points/weights

4Note that this assumption is general since most commonly used distance functions (e.g., Manhattan distance,
Euclidean distance, Bounding Box distance) are special cases of the Lp metric. However, this excludes distance
functions that involve “cross correlation” among dimensions. Handling cross-correlated functions has been addressed
in [138] and can be incorporated to the techniques developed in this chapter.
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variable queue : MinPriorityQueue(object | node)
function GetNext(Q)
1 while not queue.IsEmpty() do
2 top=queue.Pop();
3 if top is an object
4 return top;
5 else if top is a leaf node
6 for each object O in top
7 queue.push(O, DQ(Q,O));
8 else /* top is an index node */
9 for each child node N in top
10 queue.push(N , MINDIST (Q, N));
11 endif
12 enddo
end function

Table 8.2: Basic Incremental k-NN Algorithm

in PQ and WQ are updated is inconsequential to the discussion in the rest of the chapter. This
chapter discusses how to evaluate the refined query after it has been constructed using one of the
above models: hence, the techniques presented here will work irrespective of how it was constructed.

8.2.4 Query Evaluation

We first describe how a ‘starting’ query is evaluated.

8.2.4.1 Selection Queries

One option is to use sequential scan followed by sorting to return the next best object. This
technique is prohibitively expensive when the database is large (see figure 8.12).

There are several approaches to compute the nearest neighbors of a spatial object or point [131,
71, 6]. Given the constraints of the application area we envision, the following properties are
desirable in an algorithm:

• it works with data partitioning indexing structures that support the MINDIST operator (e.g.,
R-tree [65], HybridTree [25])

• the output is sorted: it returns the nearest neighbors ordered by their distance to the query

• the algorithm is easily implemented in a pipeline fashion and has no a priori restriction on
the largest distance or number of neighbors to be returned

• avoids the potential of query restarts inherent in the arbitrary selection of an epsilon for a
range query

An algorithm that fulfills these requirements is an incremental nearest neighbor algorithm based
on the work of Roussopoulos [131] and Hjaltson [71].
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Basic k-NN algorithm: The algorithm is shown in table 8.2. It maintains a priority queue
that contains index nodes as well as data objects prioritized based on their distance from the query
Q, i.e., the smallest item (either node or object) always appears at the top of the queue (min-
priority queue). Initially, the queue contains only the root node (before the first GetNext(Q) is
invoked). At each step, the algorithm pops the item from the top of the queue: if it is an object, it
is returned to the caller; if it is a node, the algorithm computes the distance of each of its children
from the query and pushes it into the queue. The distances are computed as follows: if the child is
a data object, the distance is that between the query and the object point; if the child is a node,
the distance is the minimum distance (referred to as MINDIST [70]) from the query point to the
nearest (according to the distance function) boundary of the node.

8.2.4.2 Multidimensional Join

A straightforward option is to use a nested loop join, calculate the distance between all objects,
sort the result and iteratively return the next best answer. This option can become very expensive
when the two relations involved are large since the result size is proportional to the multiplication
of the size of the individual relations. This negates its use for interactive querying. Among the
many available algorithms for multidimensional join, the incremental algorithm by Hjaltson and
Samet [72] stands out for satisfying several desirable properties:

• it is similar in spirit to the incremental Nearest Neighbor selection algorithm we use

• it works with data partitioning indexing structures that support the MINDIST operator (e.g.,
R-tree [65], HybridTree [25])

• the output is sorted: it returns the closest pairs first, followed by more distant pairs

• the algorithm is easily implemented in a pipeline fashion and has no a priori restriction on
the largest distance or number of pairs to be returned

• it is optimized for the case where the number of pairs shown to the user is small as compared
to other algorithms that must first compute the full result, then sort it before being presented
to the user

For these reasons, we used this algorithm as a basic building block to develop an algorithm for
efficient re-evaluation of refined queries. The algorithm is shown in figure 8.3. Hjaltson presented
several variations of the join algorithm which differ in the policy for navigating the trees [72]. Some
policies give preference to a depth-first approach, while a symmetric approach is more breath-first
in nature. Regardless of the traversal policy, the algorithm uses a priority queue to process a pair
of nodes or data items at a time. The priority queue returns the closest pair of 〈node, node〉,
〈node, point〉, 〈point, node〉, 〈point, point〉 seen so far. If the pair consists of data items only, it is
returned with the corresponding distance. Else, the pair is explored (refined) into its components
for which new distances are computed and are added to the priority queue. The algorithm also

101



type { (node | point) : A, (node | point) : B} : pair
variable queue: MinPriorityQueue(distance, pair)
function GetNextPair()
1 while not queue.IsEmpty() do
3 top=queue.Pop();
4 if top.A and top.B are objects /*i.e., points*/
5 return top;
6 else if top.A and top.B are nodes
7 for each child o1 in top.A
8 for each child o2 in top.B
10 if o1 and o2 are nodes
11 queue.insert(MINDIST RECT (o1, o2), 〈o1, o2〉);
12 if o1 is a node and o2 is a point
13 queue.insert(MINDIST (o2, o1), 〈o1, o2〉);
14 if o1 is a point and o2 is a node
15 queue.insert(MINDIST (o1, o2), 〈o1, o2〉);
16 if o1 is a node and o2 is a point
17 queue.insert(DQ(o1, o2), 〈o1, o2〉);
18 else if top.A is a node and top.B is a point
19 for each child o1 in top.A
20 if o1 is a node
21 queue.insert(MINDIST (top.B, o1), 〈o1, top.B〉);
22 if o1 is a point
23 queue.insert(DQ(o1, top.B), 〈o1, top.B〉);
24 else if top.A is a point and top.B is a node
25 /* mirror of above with top.A and top.B reversed*/
26 else if top.A is a point and top.B is a point
27 queue.insert(DQ(top.A, top.B), 〈top.A, top.B〉);
28 endif
29 enddo
end function

Table 8.3: Basic Incremental Multidimensional Join Algorithm
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incorporates a pruning option to limit the maximum distance between pairs which in turn influences
the size of the priority queue. We describe the MINDIST RECT later in section 8.5.

8.2.5 Problem Statement

In this chapter we address the following problems: (1) Given a table with a multidimensional column
(attribute) A and a refined selection query Q over that column, how to evaluate the selection
and return answer(Q) as efficiently as possible, and (2) given two tables R and T each with a
multidimensional column (attribute) R.A and T.A, and a refined query Q, how to evaluate the
join of R and T and return answer(Q) as efficiently as possible. As mentioned before, since Q is
given to us (by the refinement model), the techniques proposed in the chapter have no effect on
the quality of the answers, i.e., on answer(Q); the only goal is efficiency. To achieve the goal, we
need to address the following problems:

• Multipoint queries and arbitrary distance functions: The GetNext(Q) operation is
performed by executing the k-NN algorithm on the corresponding F-index Idx. Traditionally,
the k-NN algorithm has been used for single point queries, i.e., Q is a single point in S and
the Euclidean distance function, i.e., DQ is Euclidean (no dimension weights) [131, 70]. In
a query refinement environment, the above assumptions do not hold. We discuss how we
implement GetNext(Q) efficiently when (1) Q can be a multipoint query and (2) DQ can be
any Lp metric and can have arbitrary dimension weights.5 We discuss this in section 8.3.

• Optimization of refined selection queries: The multipoint query optimization is a nec-
essary building block for our techniques to execute refined selection queries efficiently. We
focus our work on first achieving I/O optimality and then to further improve by achieving
computational optimality. We show that in general it is not possible to achieve computational
optimality under the design constraints (e.g., incremental processing), and propose a heuristic
approach to get close to the optimality criteria. We present our techniques in section 8.4.

• Optimization of refined join queries: We extend the techniques applied to refined selec-
tion queries to refined join queries. We focus on reducing the I/O and CPU requirements of
joins.

5Note that it is possible to avoid multipoint queries (i.e., support only single point queries) by always using QPM as
the query modification technique. However, Porkaew et. al. show that QEX based techniques usually perform better
than QPM based ones in terms of retrieval effectiveness [123, 122]. Hence supporting multipoint queries efficiently
is important for effective and efficient query refinement. Also, since multipoint queries are a generalization of single
point queries, supporting multipoint queries makes the techniques developed in this chapter applicable irrespective
of the query modification technique used.
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8.3 k-Nearest Neighbor Selection Algorithm for Multipoint

Queries

The GetNext(Q) function in table 8.2 can handle only single point queries, i.e., nQ = 1. One
way to handle a multipoint query Q = 〈nQ,PQ,WQ,DQ〉 is by incrementally determining the
next nearest neighbor NN

(i)
Q of each point P

(i)
Q ∈ PQ by invoking GetNext(P (i)

Q ) (for i = [1, nQ])

computing its overall distances DQ(Q,NN
(i)
Q ) (using Equation 8.2) and storing them in a buffer

until we are sure that we have found the next nearest neighbor to Q. This technique, referred to
as the Multiple Expansion Approach, was proposed in our early work [125] and by FALCON [169]
which showed it to perform better than other approaches like the centroid-based expansion and
single point expansion approaches [125].

In this chapter, we propose an alternate approach to evaluating multipoint queries. We refer to
it as the multipoint approach. In this approach, we modify the GetNext(Q) function to be able to
handle multipoint queries, i.e., it should be able to compute the distances of the nodes and objects
directly from the multipoint query Q and explore the priority queue based on those distances. The
basic algorithm in table 8.2 does not change, the only changes are the distance computations. As
before, there are 2 types of distance computations: (1) distance of an object to the multipoint query,
i.e., DQ(Q,O) (2) distance of a node to the multipoint query (MINDIST), i.e., MINDIST (Q,N).
The computation of (1) follows directly from Equation 8.2. So all we need to do is to define the
distance MINDIST (Q,N) between a multipoint query Q and a node N of the F-index. As in
the single point case, the definition of MINDIST depends on the shape of the node boundary. We
assume that the F-index Idx is a feature-based index (e.g. Hybrid tree, R-tree, X-tree, KDB-tree,
hB-tree) because distance-based index structures (e.g., SS-tree, SR-tree, TV-tree, M-tree) cannot
handle arbitrary dimension weights. In a feature-based index, the bounding region (BR) of each
node N is always, either explicitly or implicitly, a dS-dimensional rectangle in the feature space S

[25].

Definition 8.3.1 (MINDIST for Multipoint Queries) Given the bounding rectangle (BR) RN =
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〈L,H〉 of a node N , where L = 〈l1, l2, ..., ldS
〉 and H = 〈h1, h2, ..., hdS

〉 are the two endpoints of the
major diagonal of RN , li ≤ hi for 1 ≤ i ≤ dS. The nearest point NP (P (i)

Q , N) in RN to each point

P
(i)
Q in the multipoint query Q = 〈nQ,PQ,WQ,DQ〉 is defined as follows (explained in figure 8.1).

NP (P (i)
Q , N)[j] =





lj if P
(i)
Q [j] < lj

hj if P
(i)
Q [j] > hj

P
(i)
Q [j] otherwise

(8.3)

where NP [j] denotes the position of NP along the jth dimension of the feature space S, 1 ≤ j ≤ dS.
MINDIST (M, N) is defined as:

MINDIST (Q,N) =
nQ∑

i=1

w
(i)
Q DQ(P (i)

Q , NP (P (i)
Q , N)) (8.4)

The GetNext function can handle arbitrary distance functions DQ (i.e., Lp metrics with ar-
bitrary intra-feature weights). The above algorithm is correct (i.e., GetNext(Q) returns the next
nearest neighbor of Q) if MINDIST (Q, N) always lower bounds DQ(Q,T ) where T is any point
stored under N .

Lemma 8.3.1 (Correctness of GetNext algorithm) MINDIST (Q,N) lower bounds DQ(Q,T ).

Proof: Let N be a node of the index structure, R be the corresponding bounding rectangle
and T be any object under N . Let us assume that DQ is monotonic. We need to show that
MINDIST (Q,N) ≤ DQ(Q,T ). Let T = 〈t1, t2, ..., tdS

〉 be the be the dS-dimensional vector and
R = 〈l1, l2, ..., ldS

, h1, h2, ..., hdS
〉 be the dS-dimensional bounding rectangle. Since T is under N , T

must be spatially contained in R.

lj ≤ tj ≤ hj , j = [1, dS ] (8.5)

Using the definition of NP (P (i)
Q , N)[j] and DQ(P (i)

Q , T ), Equation 8.5 implies

|P (i)
Q [j]−NP (P (i)

Q , N))[j]| ≤ |P (i)
Q [j]− T [j]|, j = [1, dS ] (8.6)

⇒ DQ(P (i)
Q , NP (P (i)

Q , N)) ≤ DQ(P (i)
Q , T ) since D is a weighted Lp metric (8.7)

⇒
n∑

i=1

wiDQ(P (i)
Q , NP (P (i)

Q , N)) ≤
n∑

i=1

w
(i)
Q DQ(P (i)

Q , T ) since wi ≥ 0 (8.8)

⇒ MINDIST (Q,N) ≤ DQ(Q,T ) (8.9)
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Our experiments show that the multipoint approach is significantly more efficient compared to
the previously proposed multiple expansion approach (cf. section 8.6).

8.4 Evaluation of k-NN Refined Selection Queries

A naive way to evaluate a single feature refined query is to treat it just like a starting query and
execute it from scratch as discussed in section 8.2.4. This approach is wasteful as we can save most
of the execution cost of the refined query, both in terms of disk accesses (I/O cost) and distance
calculations (CPU cost), by exploiting information generated during the previous iterations of the
query. In this section, we discuss how to optimize the GetNext(Q) function. In the naive approach,
the same nodes of Idx may be accessed from scratch by the k-NN algorithm repeatedly iteration
after iteration. In other words, a node of Idx is being accessed from disk multiple times during
the execution of a query (over several iterations) causing unnecessary disk I/O. For example, let us
consider the query shown in figure 8.2. Region R1 represents the iso-distance range corresponding
to the distance of the kth NN of the starting query – it is the region in the feature space already
explored to return the top k matches to the starting query, i.e., all nodes overlapping with R1 were
accessed and all objects (k in number) in that region were returned. R2 represents the iso-distance
range corresponding to the distance of the kth NN of the refined query – it is the region that
needs to be explored to answer the refined query, i.e., all nodes overlapping with R2 need to be
explored and all objects (k in number) in that region need to be returned. If no buffering is used,
to evaluate the refined query, the naive approach would access all the nodes overlapping with R2
from the disk, thus accessing those nodes that overlap with the shaded region from the disk twice.
If traditional LRU buffering is used, some of the nodes overlapping with the shaded region may still
be in the database buffer and would not require disk accesses during the evaluation of the refined
query. Our experiments show that, for reasonable buffer sizes, most of the nodes in the shaded
region get ejected from the buffer before they are accessed by the refined query. This is due to the
use-recency based page replacement policy used in database buffers. The result is that the naive
buffering approach still needs to perform large numbers of repeated disk accesses to evaluate refined
queries (cf. figure 8.9). Concurrent query sessions by different users and user think time between
iterations would further reduce buffer hit ratio, causing the naive approach to perform even more
poorly.

Our goal in this chapter is to develop a more I/O-efficient technique to evaluate refined queries.
If a node is accessed from disk once during an iteration of a query, we should keep it in main
memory (by caching) so that it is not accessed from disk again in any subsequent iteration of that
query. In figure 8.2, to evaluate the refined query, an I/O optimal algorithm would access from
disk only those nodes that overlap with region R2 but do not overlap with region R1 and access
the remaining nodes (i.e., those that overlap with the shaded region) from memory (i.e., from the
cache). We formally state I/O optimality as follows.
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Definition 8.4.1 (I/O Optimality) Let N be a node of the F-index Idx. An algorithm executing
the refined query Qnew is I/O optimal if it makes a disk access for N only if (1) there exists at least
one desired answer O such that DQ(Qnew, O) ≥ MINDIST (Qnew, N) and (2) N is not accessed
during any previous iteration (say Qold).

Condition (1) is necessary to guarantee no false dismissals, while Condition (2) guarantees that
a node is accessed from the disk at most once throughout the execution of the query across all
iterations of refinement. The naive approach is not I/O optimal as it does not satisfy condition (2).

We achieve I/O optimality by caching on a per-query basis instead of using a common LRU
buffer for all queries. To ensure condition (2), we need to ‘cache’ the contents of each node accessed
by the query in any iteration and retain them in memory till the query ends (i.e., till the last
iteration) at which time the cache can be freed and the memory can be returned to the system. Since
the priority queue generated during the execution of the starting query contains the information
about the nodes accessed, we can achieve the above goal by caching the priority queue. We assume
that, for each item (node or object), the priority queue stores the feature values of the item (i.e., the
bounding rectangle if the item is a node, the feature vector if it is an object) in addition to its id and
its distance from the query. This is necessary since, in some approaches, we need to recompute the
distances of these items based on the refined queries. We also assume that the entire priority queue
fits in memory as is commonly assumed in other works on nearest neighbor retrieval [86, 139].6

In the following subsections, we describe how we can use the priority queue generated during the
starting query (that contains items ordered based on distance from the starting query) to efficiently
obtain the top k matches based on their distances from the refined query.

8.4.1 Full Reconstruction (FR)

We first describe a simple approach called the full reconstruction approach. In this approach, to
evaluate the refined query, we ‘reconstruct’ a new priority queue queuenew from the cached priority
queue queueold by popping each item from queueold, recomputing its distance from the refined
query Qnew, and then pushing it into queuenew. We discard the old queue when all items have
been transferred. We refer to this phase as the transfer phase. Subsequently, the multipoint k-
NN algorithm proposed in section 8.3 is invoked with Qnew as the query on queuenew. We refer
to this phase as the explore phase. The queue is handed from iteration to iteration through the
reconstruction process, i.e., the queuenew of the previous iteration becomes the queueold of the
current iteration and is used to construct the queuenew of the current iteration. Thus, if a node
is accessed once, it remains in the priority queue for the rest of the query and in any subsequent
iteration, is accessed directly from the queue (which is assumed to be entirely in memory) instead

6This assumption is reasonable when the number k of top matches requested is relatively small compared to the
size of the database which is usually the case [21]. For example, in our experiments, when k = 100, the size of priority
queue varies between 512KB and 640KB (the size of the F-index is about 11MB). The techniques proposed in the
chapter would work even if the priority queue does not fit in memory and would still perform better than the naive
approach; however, they may not be I/O optimal.
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Figure 8.3: CPU Cost of Full and Selective Reconstruction Approaches

of reloading from the disk. The entire sequence of iterations is managed using two queues and
swapping their roles (old and new) from iteration to iteration. It is easy to see that this approach
is I/O optimal.

Now that we have achieved I/O optimality, let us consider the CPU cost of the approach.
The CPU cost is proportional to the number of distance computations performed. The algorithm
performs distance computations during the transfer phase (one computation each time an item is
transferred from queueold to queuenew) and also during the explore phase (one computation for
each child in the node being explored). Since the technique is I/O optimal, there is no node being
explored unnecessarily, i.e., we cannot save any distance computations in the explore phase (already
optimal). However, we can reduce the CPU cost of the transfer phase if we avoid transferring each
and every item from queueold to queuenew without sacrificing correctness. In other words, we should
transfer only those items that are necessary to transfer to avoid false dismissals.

8.4.2 Selective Reconstruction (SR)

Our Selective Reconstruction approach transfers incrementally only as many items as are needed
to produce the next result. We first describe how to achieve this within a single feedback iteration
and describe the problems found, then extend it to function properly for multiple iterations and
discuss the limits of this technique.

8.4.2.1 Single Iteration Selective Reconstruction

We modify the FR approach to reduce the CPU cost while retaining the I/O optimality. We
only transfer those items from queueold to queuenew that are necessary to ensure correctness. We
achieve this by imposing a stopping condition on the transfer as illustrated in figure 8.3. Suppose
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that GetNext is returning the kth NN of Qnew. P1 is the iso-distance range corresponding to the
distance of the kth NN of Qnew, i.e., any object outside this region is at least as far as the kth NN.
P2 is the smallest iso-distance range from Qold totally containing P1. Therefore, to return the kth
NN of Qnew, we can stop transferring when we reach the range P2 in queueold without sacrificing
correctness since at this point, any object left unexplored in queueold is at least as far from Qnew

as the kth NN of Qnew. This represents the optimal stopping condition because we cannot stop
before this without sacrificing correctness. In other words, if we stop before this, there will be at
least one false dismissal. The FR approach has no stopping condition at all as is graphically shown
in figure 8.3 by region P4, i.e., the entire feature space.

While in the FR approach, the entire transfer phase is followed by the entire explore phase,
here the two phases are interspersed. The algorithm pseudo-code is shown in table 8.4. During
the transfer phase, we transfer items from queueold to queuenew until we are sure that no item
exists in queueold that is closer to Qnew than the top item of queuenew (i.e., the next item to be
explored – topnew). In other words, the lower bounding distance LBD(queueold, Q

new) of any item
in queueold is greater than or equal to the distance between topnew and Qnew (topnew.distance =
DQ(Qnew, topnew)), this is the stopping condition in Line 5. If we are sure, we go into the explore
phase, i.e., we explore topnew. If topnew is an object, it is guaranteed to be the next best match to
Qnew and is returned to the caller. Otherwise, it is a node; in that case, we access it from disk,
compute the distance of each child from Qnew and push it back into queuenew; then we return to
the transfer phase. It is easy to see that the selective reconstruction technique is I/O optimal.

Let us now explain the notion of LBD in the stopping condition (in Line 5). LBD(queueold, Q
new)

denotes the the smallest distance any item in queueold can have with respect to the new query
Qnew, i.e., LBD(queueold, Q

new) ≤ Dnew
Q (Qnew, O) for all O ∈ queueold. To complete the algo-

rithm, we need to specify how to compute LBD (queueold, Q
new). We need to compute it without

incurring any extra cost, i.e., in a single constant time operation. If we can obtain the optimal
LBD(queueold, Q

new) (i.e., there exists an object O ∈ queueold where LBD(queueold, Q
new) =

Dnew
Q (Qnew, O)), we can achieve the optimal stopping condition (shown by P2 in figure 8.3) and

hence the optimal CPU cost.

Example 8.4.1 (SR Algorithm) Figure 8.4 shows old and new queries (Qold and Qnew) with
iso-distance curves at one unit intervals. For example, in the figure, the outermost iso-distance
curve of Qnew is the optimal stopping condition for any points within the first iso-distance curve of
Qold (i.e., points A, B, C).
Following figure 8.4, the SR algorithm examines queueold in distance order. It first compares the
top item from queuenew which at first is empty (and thus 0) to the LBD of point A, and finds that
the condition is not met, A is then transferred to queuenew. This continues until E is retrieved from
queueold. For E, the optimal stopping condition should be true as there are no items in queueold

that can possibly be closer to Qnew. Thus E would be returned by GetNext.
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Figure 8.4: LBD example

Figure 8.5: Problem Region for Single-iteration SR Approach
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variable Qold: Query // (of previous iteration)
variable queueold: MinPriorityQueue // (of previous iteration)
variable queuenew: MinPriorityQueue // (of current iteration)
function GetNext(Qnew)

1 while (not queuenew.IsEmpty()) do
/* TRANSFER PHASE (Lines 2-10)*/

2 while (not queueold.IsEmpty()) do
3 topold=queueold.Top();
4 topnew=queuenew.Top();

/* STOPPING CONDITION (Line 5)*/
5 if (LBD(queueold, Q

new) ≥ topnew.distance) break
6 else queueold.Pop();
7 Recompute topold.distance based on Qnew

8 Push topold into queuenew

9 endif
10 enddo

/* EXPLORE PHASE (Lines 11-21) */
11 queuenew.Pop();
12 if topnew is an object
13 return topnew;
14 else if topnew is a leaf node
15 for each object in topnew

16 queuenew.push(object, DQ(Qnew, object));
17 else /* topnew is an index node */
18 for each child of topnew

19 queuenew.push(child, MINDIST (Qnew, child));
20 endif
21 enddo
end function

Table 8.4: The Single-iteration GetNext Algorithm for Refined Queries using the SR Approach

Lemma 8.4.1 (CPU Optimality) The number of distance computations (i.e., the stopping con-
dition) is optimal if LBD(queueold, Q

new) is optimal.

Proof: Let Inew be an item in queuenew. Let Iold be the item at the top of queueold. Assuming
LBD(queueold, Q

new) is tight, we need to show that if Iold is transferred to queuenew, there ex-
ists an item I ′old in queueold such that Dold

Q (Iold, Q
old) ≤ Dold

Q (I ′old, Q
old) and Dnew

Q (I ′old, Q
new) ≤

Dnew
Q (Inew, Qnew). Let us assume Iold is transferred, i.e, the stopping condition is not satis-

fied (LBD(queueold, Q
new) < topnew.distance). Since LBD is tight, there exists an unexplored

item I ′old in queueold such that Dnew
Q (I ′old, Q

new) ≤ topnew.distance. Since topnew.distance ≤
Dnew

Q (Inew, Qnew), Dnew
Q (I ′old, Q

new) ≤ Dnew
Q (Inew, Qnew). Since Iold is at the top of queueold and

I ′old is yet unexplored, Dold
Q (Iold, Q

old) ≤ Dold
Q (I ′old, Q

old).
We believe that it is not possible to compute the optimal LBD without exploring queueold

(which would defeat the purpose of the reconstruction approach). Instead we derive a conservative
estimate of LBD. For correctness, the estimated LBD must be an LBD, i.e., it must always under-
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estimate the optimal LBD. The closer the estimate to the optimal LBD, the fewer the number of
transfers, and the lower the CPU cost. In the derivation, we exploit the fact that topold.distance

lower bounds the distance of any item in queueold from the old query Qold. For simplicity of
notation, we define the distance D(Qold, Qnew) between two multipoint queries as follows. Let
Qold = 〈nold

Q ,Pold
Q ,Wold

Q ,Dold
Q 〉 be the old multipoint query where Pold

Q = {P old
Q

(1)
, · · · , P old

Q
(nold

Q )}
and Wold

Q = {wold
Q

(1)
, · · · , wold

Q
(nold

Q )}. Let Qnew = 〈nnew
Q ,Pnew

Q ,Wnew
Q ,Dnew

Q 〉 be the new multi-
point query where Pnew

Q = {Pnew
Q

(1), · · · , Pnew
Q

(nnew
Q )} and Wnew

Q = {wnew
Q

(1), · · · , wnew
Q

(nnew
Q )}. The

distance D(Qold, Qnew) is defined as the weighted all-pairs distance between the constituent points:

D(Qold, Qnew) =
nold

Q∑

i=1


wold

Q
(i)

nnew
Q∑

j=1

wnew
Q

(j)Dnew
Q (P old

Q
(i)

, Pnew
Q

(j))


 (8.10)

Also, let µold
Q

(k)
, k = [1, dS ] and µnew

Q
(k), k = [1, dS ] denote the old and new intra-feature weights

respectively:

Dold
Q (T1, T2) = [ΣdS

j=1µ
old
Q

(j)
(|T1[j]− T2[j]|)p]

1/p
(8.11)

Dnew
Q (T1, T2) = [ΣdS

j=1µ
new
Q

(j)(|T1[j]− T2[j]|)p]
1/p

(8.12)

The following lemma defines the stopping condition (SC) in Line 5.

Lemma 8.4.2 (Stopping Condition) ( topold.distance
K −D(Qnew, Qold)) lower bounds the distance

of any unexplored object in queueold from Qnew where K = maxdS
k=1

(
µold

Q
(k)

µnew
Q

(k)

)
.

Proof: Let I be any item in queueold. We need to show Dold
Q (I, Qold) ≥ topold.distance ⇒

Dnew
Q (Qnew, I) ≥ topold.distance

maxm
k=1

µold
Q

(k)

µnew
Q

(k)

−Dnew
Q (Qnew, Qold). Let us assume

Dold
Q (Qold, I) ≥ topold.distance (8.13)

Let P old
Q

(i) ∈ P old
Q and Pnew

Q
(j) ∈ Pnew

Q . By triangle inequality,

Dnew
Q (Pnew

Q
(j), I) ≥ Dnew

Q (P old
Q

(i)
, I)−Dnew

Q (Pnew
Q

(j), P old
Q

(i)
) (8.14)

From Equations 8.11 (assuming D is monotonic),

Dnew
Q (P old

Q
(i)

, I) ≥ Dold
Q (P old

Q
(i)

, I)

maxdS
k=1

µold
Q

(k)

µnew
Q

(k)

(8.15)
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From Equation 8.14 and 8.15,

Dnew
Q (Pnew

Q
(j), I) ≥ Dold

Q (P old
Q

(i)
, I)

K
−Dnew

Q (Pnew
Q

(j), P old
Q

(i)
) (8.16)

where K = maxm
k=1

µold
Q

(k)

µnew
Q

(k) . Multiplying both sides by wold
Q

(i) (since wold
Q

(i) ≥ 0) and summing over
i = 1 to nold,

nold∑

i=1

(wold
Q

(i)Dnew
Q (Pnew

Q
(j), I)) ≥ 1

K

nold∑

i=1

(wold
Q

(i)Dold
Q (P old

Q
(i)

, I))−
nold∑

i=1

(wold
Q

(i)Dnew
Q (Pnew

Q
(j), P old

Q
(i)

))

(8.17)

⇒ Dnew
Q (Pnew

Q
(j), I) ≥ Dold

Q (Qold, I)
K

−Dnew
Q (Pnew

Q
(j), Qold) (8.18)

Multiplying both sides by wnew
Q

(j) (since wnew
Q

(j) ≥ 0) and summing over j = 1 to nnew,

nnew∑

j=1

(wnew
Q

(j)Dnew
Q (Pnew

Q
(j), I)) ≥ 1

K

nnew∑

j=1

(wnew
Q

(j)Dold
Q (Qold, I))−

nnew∑

j=1

(wnew
Q

(j)Dnew
Q (Pnew

Q
(j), Qold

Q ))

(8.19)

⇒ Dnew
Q (Qnew, I) ≥ Dold

Q (Qold, I)
K

−Dnew
Q (Qnew, Qold) (8.20)

Equations 8.13 and 8.20 imply

Dnew
Q (Qnew, I) ≥ topold.distance

maxm
k=1

µold
Q

(k)

µnew
Q

(k)

−Dnew
Q (Qnew, Qold) (8.21)

The LBD(queueold, Q
new) in the stopping condition in Line 5 of the SR algorithm (cf. table

8.4) can now be replaced by the above estimate. Thus, the stopping condition is:

(
topold.distance

K
−D(Qnew, Qold)) ≥ topnew.distance (8.22)

Note that the above SC is general. It is valid irrespective of the query modification technique
used, i.e., it is valid for both QPM and QEX models. It is also valid irrespective of whether intra-
feature reweighting is used or not. If intra-feature reweighting is not used (i.e., all weights are
considered equal), K turns out to be 1 which means there is no effect of intra-feature reweighting
at all. Also note that both K and D(Qnew, Qold) are computed just once during the execution of
the refined query. The computation of K is proportional only to the number of dimensions dS in
the space. The computation of LBD involves just two arithmetic operations, a division followed
by a subtraction. Since we use an estimate of LBD and not the exact LBD, in general, SC is
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not optimal. This implies that, as shown in figure 8.3, the stopping condition is range P3 and not
the optimal range P2. We perform experiments to compare the above stopping condition with the
optimal one in terms of CPU cost (cf. section 8.6).

Example 8.4.2 Consider again figure 8.4. The first item from queueold is A. Its distance to Qnew

is 5, and Qnew has a high weight (0.66) in the vertical dimension and a small weight (0.33) in the
horizontal dimension. So, K = max

{
0.5
0.33 , 0.5

0.66

}
= 0.5

0.33 = 1.5, and notice that D(Qnew, Qold) = 5.
So the LBD estimate for A is 0

1.5 − 5 = −5. Likewise for point E, the LBD is 3
1.5 − 5 = 2− 5 = −3.

Here we see the lower bounding nature of our approximation. If our LBD estimate were optimal,
the LBD for point E should be 0 and E could be returned.

8.4.2.2 Multiple Iteration Selective Reconstruction

The above discussion of the SR approach considered how to evaluate the first iteration of the query
refinement given the priority queue queuestart generated during the execution of the start query
(iteration 0). The discussion omitted what to do when the iteration finishes and a new feedback
iteration starts. If we discard the old queue, create a new, empty queue and follow the same
algorithm, we will sacrifice the correctness of the algorithm. Consider figure 8.5 which shows the
starting query Qstart and two feedback iterations Q1 and Q2 using the simple QPM model and
no reweighting. If we follow the SR algorithm for Q2, we will miss answers in the problem region.
These items were present in queuestart, but not transferred to queue1 (some may be included since
our LBD is an approximation), therefore they are irretrievably lost for Q2.

To properly handle multiple feedback iterations using the SR algorithm, we must accommodate
for unprocessed items in earlier iterations. Copying the remaining items to the new queue would
be equivalent to the FR approach. Instead, our solution is to maintain a history of the queries and
queues from the start. This approach stores the same number of items as the FR approach (no item
is ever discarded), and has the benefits of the SR approach in exchange for some administrative
complexity. Table 8.5 shows the algorithm that accounts for multiple iterations. We maintain a
history list of tuples 〈Q(i), queuei,Ki, D(Q(i), Qnew)〉 that keep each query, queue and additional
parameters for each iteration. When a new iteration starts, we update all tuples in the history with
the corresponding new values for Ki and D(Q(i), Qnew). The algorithm then extends the single
iteration SR by selecting in each iteration the minimum LBD among all queries in the history to
maintain the LBD correctness. The CPU complexity of the algorithm is only increased by selecting
the minimum LBD among all previous queues; as discussed above, this means two arithmetic
operations per iteration in addition to the single iteration SR algorithm. The storage requirements
for each iteration consist of the query Qi which is dependent only on the number of points and the
dimensionality (but typically only a few hundred bytes in size), and the values Ki and D(Q(i), Qnew)
which are just two constants. The total number of items in all queues is at most the that of the
FR approach (only necessary nodes are expanded, and no items are dropped).
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variable history: 〈Q(i), queuei,KI , D(Q(i), Qnew〉: // query and queue history
variable queuenew: MinPriorityQueue // (of current iteration)
function GetNext(Qnew)

1 while (not queuenew.IsEmpty()) do
/* TRANSFER PHASE (Lines 2-11)*/

2 while (∃i | ¬history.queuei.IsEmpty()) do
3 i=i | min{LBD(history.queuei, Q

new)};
4 topi=history.queuei.Top();
5 topnew=queuenew.Top();

/* STOPPING CONDITION (Line 6)*/
6 if (LBD(history.queuei, Q

new) ≥ topnew.distance) break
7 else history.queuei.Pop();
8 Recompute topi.distance based on Qnew

9 Push topi into queuenew

10 endif
11 enddo

/* EXPLORE PHASE (Lines 12-21) */
12 queuenew.Pop();
13 if topnew is an object
14 return topnew;
15 else if topnew is a leaf node
16 for each object in topnew

17 queuenew.push(object, DQ(Qnew, object));
18 else /* topnew is an index node */
19 for each child of topnew

20 queuenew.push(child, MINDIST (Qnew, child));
21 endif
22 enddo
end function

Table 8.5: The Multi-iteration GetNext Algorithm for Refined Queries using the SR Approach

8.4.2.3 Cost–benefit based use of SR

As later iteration queries drift farther apart from the starting query, the storage and computation
costs increase as more items and auxiliary information accumulate. We turn our attention to the
problem of deciding whether a new query iteration should be evaluated by continuing the use of SR,
or naively (followed by iterations using SR). We distinguish three distinct considerations involved:

• IO cost: From an IO perspective, the FR and SR techniques are IO optimal, therefore
they always reduce the number of IOs over a naive execution regardless of the convergence
properties of the feedback. When queries converge over iterations, as is generally the case [169,
125, 78], the IO count per iteration asymptotically approaches 0 (see experiments).

• CPU cost: With more items from early iterations lingering in the queues, the number
of computations increases. An absolute upper bound on the number of iterations can be
obtained by observing that each new SR iteration necessarily requires us to revise the Ki
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and D(Q(i), Qnew) values for each iteration.7 The computation of these values depends on
the dimensionality of the space and the number of points in the queries. For simplicity,
we estimate the cost to be the same as one distance computation. By maintaining simple
statistics, we can estimate the number of distance computations used in a naive reevaluation
to be the number of items for which a computation was made in the starting query Q0.
This is the number of items in history.queue0 plus the k items returned to the user plus any
intermediate items that were discarded mdiscarded

0 . A definite CPU based upper bound is then
when: k + mdiscarded

0 + | history.queue0 |< i that is, there are more iterations than elements
in the starting query.

This bound is generally much too high. A new iteration starts by exploring the current
and earlier queues and transfers items until the stopping condition permits the return of a
result. In practice, this generally implies several hundred distance computations that must
be done after the new iteration started. SR adds computation overhead proportional to
the number of iterations over FR. A better estimate can thus be obtained by deducting those
initial computations from the number of iterations. Let t(i) be the number of items transferred
during iteration i to the current queue from all earlier queues before the first result is returned
to the user. Then a better estimate is: k + mdiscarded

0 + | history.queue0 | +t(i−1) < i. From
our experiments, SR still pays off even after 50 iterations.

• Memory cost: To reduce the memory used, we must eliminate items from the queues. We
follow a straightforward approach which drops all the queues whenever the DBMS faces a
memory shortage and do a naive reexecution of the query, thus trading IO cost for a reduced
memory footprint. A general algorithm to consolidate individual items under their parent
node is too expensive since it must examine large portions of the queues.

8.5 Evaluation of Top-k Refined Join Queries

In this section we discuss how to optimize join queries after feedback has been submitted and
processed. Due to the high cost of executing joins, it is inefficient to naively re-execute them
from scratch after an iteration of relevance feedback. A naive re-execution will cause substantial
unnecessary disk accesses, even when a traditional LRU database buffer cache is used due to the
poor locality of the distance join algorithm.

As described in section 8.2.4.2, we use a distance based join algorithm with two index trees and
a priority queue queue to maintain enough state to compute the next result pair. The algorithm
makes use of the point to point distance function DQ and the MINDIST used for selection queries
to compare points with tree nodes. To compare internal tree nodes to each other, we need to extend
the definition of MINDIST to handle two rectangles:

7This must be done either explicitly as in our description or implicitly if we avoid caching these values in the
history.
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Figure 8.6: I/O overlap of original and new query

Definition 8.5.1 (MINDIST RECT(N, N)) Given two d dimensional bounding rectangles R1N =
〈L1,H1〉 and R2N = 〈L2,H2〉 of the nodes N1 and N2, where L = 〈l1, l2, ..., ld〉 and H =
〈h1, h2, ..., hd〉 are the two endpoints of the major diagonal of RN , li ≤ hi for 1 ≤ i ≤ d.

The nearest distance nd between the rectangles R1 and R2 is defined as follows:

nd[j] =





R1.L[j]−R2.H[j] if R1.L[j] > R2.H[j]
R2.L[j]−R1.H[j] if R1.H[j] < R2.L[j]
0 otherwise

where nd[j] denotes the nearest distance between R1 and R2 along the jth dimension.
MINDIST RECT (N1, N2) if defined as:

MINDIST RECT (N1, N2) = p

√√√√
n∑

i=1

wi × |nd[i]|p

The join algorithm can handle arbitrary Lp distance metrics with arbitrary weights for each
dimension. The algorithm is correct if MINDIST (N1, N2) always lower bounds DIST (T1, T2)
where T1 and T2 are any points stored under N1 and N2 respectively.

Another change over the base algorithm is that we cache the pairs already returned to the user
in an unsorted list for later processing (queueold).

For joins, the distance function can change in its eccentricity and orientation in space. Figure 8.6
shows iso-distance contours of the same distance for an original and refined distance function.8 All
data point and node pairs in the region of the original query have been explored and are included
in queue or queueold. All possible point or node pairs in the shaded region can be re-utilized for
computing the result of the refined query. In the figure, point P2 was returned for this query point
in the previous iteration and is also included in the new iteration. P3 however is in a region that
has not been explored in connection with the present query point, and so may incur additional disk
accesses.

The algorithm in table 8.6 improves the efficiency for subsequent query iterations by caching
8This figure shows distance functions overlapped with a single data point from the query dataset, these functions

are conceptually overlapped with all data points in the query dataset and compared to the other dataset to find the
nearest pairs of points, as depicted in figure 8.7.
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the priority queue and results from earlier iterations.9 After a user is done viewing the results of a
query iteration, submits feedback and the system computes a new distance function, we initialize
a new iteration by constructing a new priority queue queue′. We construct the new priority queue
queue′ by recomputing the distance for each pair from the original priority queue queue and the
data already returned to the user queueold. This ensures that we have updated the algorithms state
for the new distance function and preserve the correctness property so we can continue exploring
at will. Note that if the list queueold becomes too large to remain in memory, it can be sequentially
written to disk and later sequentially read to be included in queue′. After all items are transferred,
queueold, and queue are discarded and queue′ becomes queue (queue ← queue′). This process
repeats for subsequent iterations.

8.6 Evaluation

We conducted an extensive empirical study to (1) evaluate the multipoint approach to answering
multipoint k-NN selection queries and compare it to the multiple expansion approach, (2) evaluate
the proposed k-NN selection query techniques, namely, full reconstruction (FR) and selective re-
construction (SR), to answering refined queries over a single feature and compare them to the naive
approach, and (3) evaluate the proposed top-k join query techniques to answering refined queries.
We conducted our experiments on real-life multimedia and spatial datasets. The major findings of
our study are:

• Efficiency of multipoint approach: The k-NN search based on our multipoint approach is
more efficient than the multiple expansion approach. The cost of the latter increases linearly
with the number of points in the multipoint query while that of the former is independent of
the number of query points.

• Speedup obtained for refined queries: The FR and SR approaches speed up the ex-
ecution of refined queries by almost two orders of magnitude over the naive approach. As
expected, the SR approach is the most efficient among all approaches. The sequential scan is
significantly slower than any of the index based approaches. Likewise, the speedup for refined

9We implemented the pruning option from [72] (cf. sec. 8.2.4.2), we do shown it here for clarity reasons.
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type { (node | point) : A, (node | point) : B} : pair
variable queue: MinPriorityQueue(distance, pair);
variable queueold: Queue(distance, pair);

function NewIteration()
1. /* DQ, MINDIST, and MINDIST RECT were */
2. /* modified by the feedback process of section 7.4 */
3. variable queue’ : MinPriorityQueue(distance, pair);
4. while not queueold.empty() do /* process earlier returns */
5. top = queueold.pop()
6. /* top.A and top.B must be points */
7. queue′.insert(DQ(top.A, top.B), 〈top.A, top.B〉)
8. enddo
9. while not queue.empty() do
10. top = queue.pop()
11. if top.A and top.B are points
12. queue′.insert(DQ(top.A, top.B), 〈top.A, top.B〉)
13. else if top.A and top.B are nodes
14. queue′.insert(MINDIST RECT (top.A, top.B), 〈top.A, top.B〉)
15. else if top.A is a node and top.B is a point
16. queue′.insert(MINDIST (top.B, top.A), 〈top.A, top.B〉)
17. else if top.A is a point and top.B is a node
18. queue′.insert(MINDIST (top.A, top.B), 〈top.A, top.B〉)
19. endif
20.enddo
21.queue = queue′ /* the re-processed queue becomes queue */
end function

function GetNextPair()
1. while not queue.IsEmpty() do
2. top=queue.pop();
3. if top.A and top.B are objects /*i.e., points*/
4. queueold.append(top); // keep it in history
5. return top;
6. else if top.A and top.B are nodes
7. for each child o1 in top.A
8. for each child o2 in top.B
9. if o1 and o2 are nodes
10. queue.insert(MINDIST RECT (o1, o2), 〈o1, o2〉);
11. if o1 is a node and o2 is a point
12. queue.insert(MINDIST (o2, o1), 〈o1, o2〉);
13. if o1 is a point and o2 is a node
14. queue.insert(MINDIST (o1, o2), 〈o1, o2〉);
15. if o1 is a node and o2 is a point
16. queue.insert(DQ(o1, o2), 〈o1, o2〉);
17. else if top.A is a node and top.B is a point
18. for each child o1 in top.A
19. if o1 is a node
20. queue.insert(MINDIST (top.B, o1), 〈o1, top.B〉);
21. if o1 is a point
22. queue.insert(DQ(o1, top.B), 〈o1, top.B〉);
23. else if top.A is a point and top.B is a node
24. /* mirror of above with top.A and top.B reversed*/
25. else if top.A is a point and top.B is a point
26. queue.insert(DQ(top.A, top.B), 〈top.A, top.B〉);
27. end if
28.enddo
end function

Table 8.6: Incremental Join Algorithm119



200

220

240

260

280

300

320

340

360

380

1 2 3 4 5 6 7 8 9 10

D
is

k
 A

c
c
e

s
s
e

s

Number of points

Multiple Expansion Approach
Multipoint Approach

Figure 8.8: I/O Cost of Multipoint Approach
and Multiple Expansion Approach

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

D
is

k
 A

c
c
e

s
s
e

s

Iteration

Naive (no buffer)
Naive (buffer size = size of PQ)

Naive (buffer size = 2*size of PQ)
Naive (buffer size = 4*size of PQ)

Reuse
Reconstruction

Figure 8.9: I/O Cost of Naive and Recon-
struction Approaches for QEX Queries

join queries easily represents an order of magnitude improvement over the naive re-execution
approach.

Thus, our experimental results validate the thesis of this chapter that the proposed approaches
to evaluating refined queries offer significant speedups over the naive approach. All experiments
reported in this section were conducted on a Sun Ultra Enterprise 450 with 1GB of physical memory
and several GB of secondary storage, running Solaris 2.7.

In general, the priority queues for the selection and join algorithms may grow too large to remain
in main memory. Many works on nearest neighbor retrieval assume that the entire priority queue
fits in memory [86, 139].10 In our NN search experiments, when k = 100, the size of priority queue
varies between 512KB and 640KB (the size of the index is about 11MB) which can easily fit in
memory. Therefore, for our NN search experiments, we assume the priority queue remains in main
memory. For the join operation, the priority queue can be significantly larger. The size needed
depends on the dimensionality of the data, and on the number of entries which itself depends on the
degree of overlap between index nodes. There are several approaches to storing a priority queue on
disk including a slotted approach presented in [72], and a collection of sorted lists with guaranteed
worst case performance [18]. In our join experiments, even when fetching the top 10,000 pairs out
of a possible 1.5 billion, the maximum size of the priority queue was about 1.6MB, well within
limits of main memory. Therefore, for our join experiments, we isolated our algorithm from the
issue of an external priority queue implementation and assume the priority queue is small enough
to fit in memory. A disk based priority queue, although important, is beyond the scope of this
chapter.

8.6.1 k-NN Selection Query Evaluation

We first discuss our results for evaluating k-NN selection queries.
10This assumption is reasonable when the number k of top matches requested is relatively small compared to the

size of the database which is usually the case [21].
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8.6.1.1 Methodology

We conducted our experiments for single feature queries on the COLHIST dataset comprised
of 4x4 color histograms extracted from 70,000 color images obtained from the Corel Database
(obtained from http://corel. digitalriver.com) [25, 122]. We use the Hybrid tree as the
F-index for the 16-dimensional color histograms [25]. We chose the hybrid tree since (1) It is a
feature-based index structure (necessary to support arbitrary distance functions)and (2) It scales
well to high dimensionalities and large-sized databases [25]. We choose a point QC randomly from
the dataset and construct a graded set of its top 50 neighbors (based on L1 distance)11 i.e., the top
10 answers have the highest grades, the next 10 have slightly lower grades etc. We refer to this set
the relevant set relevant(QC) of QC [122]. We construct the starting query by slightly disturbing
QC (i.e., by choosing a point close to QC) and request for the top 100 answers. We refer to the set
of answers returned as the retrieved set retrieved(QC). We obtain the refined query Qnew

C by taking
the graded intersection of retrieved(QC) and relevant(QC), i.e., if an object O in retrieved(QC) is
present in relevant(QC), it is added to the multipoint query Qnew

C with its grade in relevant(QC).
The goal here is to get retrieved(QC) as close as possible to relevant(QC) over a small number of
refinement iterations. The intra-feature weights were calculated using the techniques described in
[122]. In all the experiments, we perform 5 feedback iterations in addition to the starting query
(counted as iteration 0). All the measurements are averaged over 100 queries. In our experiments,
we fix the hybrid tree page size to 4KB (resulting in a tree with 2766 nodes).

8.6.1.2 Multipoint Query Results

We compare the multipoint approach to evaluating single feature k-NN queries to the multiple
expansion approach proposed in FALCON [169] and MARS [125]. Figure 8.8 compares the cost of
the two approaches in terms of the number of disk accesses required to return the top 100 answers
(no buffering used). The I/O cost of the multipoint approach is almost independent of the number of
points in the multipoint query while that of the multiple expansion approach increases linearly with
the number of query points. The reason is that since the multiple expansion approach explores the
neighborhood of each query point individually, it needs to see more and more unnecessary neighbors
as the number of query points increases.

8.6.1.3 Query Expansion Results

We first present the results for the QEX model. Figure 8.9 compares the I/O cost of the naive
and reconstruction approaches for the QEX model. In this experiment, the size of cached priority
queue varies between 512KB and 640KB (across the iterations). We first run the naive approach
with no buffer. We also run the naive approach with an LRU buffer for three different buffer

11We use the L1 metric (i.e., Manhattan distance) as the distance function DQ for the color feature since it
corresponds to the histogram intersection similarity measure, the most commonly used similarity measure for color
histograms [114, 115].
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sizes: 540KB, 1080KB and 2160KB, i.e., they would hold 135, 270 and 540 of the most recently
accessed nodes (4KB each) of the F-index (which has 2766 nodes) respectively. Note that the above
3 buffers use approximately the same amount of memory as the reconstruction approach (to keep
the priority queue cached in memory), twice as much and four times as much respectively. We also
implemented a type of session aware cache we call the Reuse approach, which is a buffer organized
as the priority queue itself. When a new iteration starts, we push back all the returned items into
the queue without any modification, this has the effect of caching all the information seen so far.
Note that since at each iteration we start with all items seen in the previous iteration in the queue,
this algorithm is not IO optimal as it may explore nodes again with the new distance function. This
buffer is then traversed based on a LBD as in the SR approach, we used the optimal LBD for this
experiment by exploring the entire queue to reflect the best possible use of this buffering approach.
We implemented this session aware buffering approach to show that even with intelligent buffering
our approach is superior.

The reconstruction approach (with no additional buffer besides the priority queue cache) signif-
icantly outperforms the naive approach, even when the latter uses much larger buffer sizes (up to 4
times more). While the reconstruction approach is I/O optimal (i.e., accesses a node from the disk
at most once during the execution of a query), the naive buffer approach, given the same amount of
memory, needs to access the same nodes multiple times from disk across the refinement iterations
of the query. In more realistic environments where multiple query sessions belonging to different
users run concurrently and users have “think time” between iterations of feedback during a session,
we expect the buffer hit rate to drop even further, causing the naive approach to perform even
more repeated disk accesses and making our approach of per-query caching even more attractive
[61]. The reuse approach performs better than any of the LRU based approaches after the second
iteration (remember that the reuse approach is not IO optimal), but worse than our reconstruction
approach. Even after five iterations, the reuse approach performs roughly three times as many
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IOs than our reconstruction approach. Figure 8.10 compares the CPU cost of the FR and SR
approaches for the QEX model. The SR approach significantly outperforms the FR approach in
terms of CPU time. Figure 8.11 compares the number of distance computations performed by the
FR approach, the SR approach with the proposed stopping condition and the SR approach with
the optimal stopping condition (range P2 in figure 8.3). The proposed stopping condition saves
more than 50 % of the distance computations performed by FR while optimal stopping condition
would have saved about 66 % of the distance computations. This shows that the proposed stopping
condition is quite close to the optimal one. Figure 8.12 compares the average response time (sum
of I/O wait time and CPU time) of a query for the naive (with buffer), FR, SR and sequential scan
approaches (assuming that the wait time of a random disk access is 10ms and that of a sequential
disk access is 1ms [62]). The SR technique outperforms all the other techniques; it outperforms the
naive approach by almost an order of magnitude over the naive approach and the sequential scan
approach by almost two orders of magnitude.

8.6.1.4 Query Point Movement Results

Figure 8.13 compares the I/O cost of the our reconstruction approach and the same reuse buffering
approach with optimal LBD used in section 8.6.1.3 (no additional buffer in either case) for the
QPM model. Again, the I/O optimal reconstruction approach is far better compared the the reuse
approach. Figure 8.14 compares the SR and FR approaches with respect to the CPU cost. Unlike
in QEX approach where the SR approach is significantly better than the FR approach, in QPM
the former is only marginally better. The reason is that, unlike in the QEX approach where the
savings in distance computations far outweighs the cost of ‘push back’, the savings only marginally
outweighs the extra cost in the case of QPM. This is evident in figure 8.15 which shows that the the
number of distance computations performed by the SR approach is much closer to that performed
by the FR approach as compared to the QEX model. Even the optimal stopping condition would
not save as many distance computations as the QEX model. This is due to dimension reweighting
that causes the stopping condition to become more conservative (by introducing the factor K in
Lemma 8.4.2) resulting in less savings in distance computations. However, with a more efficient
‘push back’ strategy, we expect the SR approach to be significantly better than the FR approach
in this case as well.

SR improves response time over FR for the top few matches. In an interactive user environment,
it is important to consider not only the time required to compute the top k answers, but how soon
they can be produced. Figure 8.16 compares FR and SR for the QPM model in terms of the relative
response time for the first answer out of top 100 queries. In FR, while the queue is transferred,
no answers are produced. By contrast, SR will produce the first answer as soon as it is possible,
therefore producing faster the answers users see first. The figure plots the fraction of time SR needs
to produce the top answer relative to FR which is always 100%.
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8.6.2 k-NN Join Query Evaluation

We now turn our attention to evaluating the performance of join queries. For this experiment,
we chose a two dimensional join based on geographic data which could simulate the geographic
distance join of example 1.0.2.

8.6.2.1 Methodology

For these experiments, we used the following two datasets: (1) the fixed source air pollution dataset
from the AIRS12 system of the EPA which contains 51,801 tuples with geographic location and emis-
sions of 7 pollutants (carbon monoxide, nitrogen oxide, particulate less than 2.5 and 10 micrometers,

12http://www.epa.gov/airs
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sulfur dioxide, ammonia, and volatile organic compounds), (2) the US census data which contains
29470 tuples that include the geographic location at the granularity of one zip code, population,
average and median household income. We constructed an R*-tree for each of these datasets with
a 2KB page size, for a maximum fan out of 85. The pollution dataset index had 923 nodes and the
census index had 548 nodes.

We focused only on the geographic location attribute and constructed queries with different
eccentricities and orientations. Then, we used these queries as starting and goal queries and let the
query refinement generate the intermediate queries. We tested starting to goal query difference in
eccentricity of up to 2 orders of magnitude, which represents a substantial change in the distance
function, far more than can be expected under normal query circumstances. Even so, our algorithm
performed quite well.

For the same sets of starting and target queries, we ran tests to obtain the top 1, 10, 100, 1000,
and 10,000 pairs13 that match the query and performed feedback on them.14 For each of these, we
measured the number of disk I/Os performed, the cpu response time (ignoring the priority queue
overhead), and the wall clock response time (subtracting the priority queue overhead).

8.6.2.2 Results

Figure 8.17 shows the number of node accesses performed (assuming no buffering) by the naive ap-
proach (re-executing the query from scratch every time) and our reconstruction approach. After the
initial query, subsequent iterations perform minimal node accesses for the reconstruction approach
while the naive approach roughly performs the same work at each iteration. We also compare to
the nested loop join algorithm. Since we assume the priority queue for our algorithm has unlimited
buffer space in memory, to be fair to nested loop join, we assume unlimited memory and fit both
complete datasets in memory (thus only 1 access per page). We included the disk accesses needed
by the nested loop join algorithm and divided this value by 10 to reflect the relative advantage of
sequential reads over random reads [62]. Thus, the roughly 150 accesses already take into account
the advantages gained from sequential access. While slightly lower than the naive re-execution,
nested loop suffers from a very high cpu overhead and easily loses out to the naive algorithm when
overall time is considered (2-3 orders of magnitude). Figure 8.18 shows the CPU time needed
by the algorithm excluding the priority queue overhead. The time required for the nested loop
join computations (ignoring the sort time since we ignored the priority queue overhead above) is
roughly 21 minutes for the approximately 1.5 billion possible pairs. The cpu time includes the cost
of reconstructing the priority queue for each new iteration. Here, due to accumulated information
in the queue, the reconstruction approach has a slight disadvantage over the naive approach, it
performs about 5-10% slower than the naive approach. Figure 8.19 shows the total wall clock time

13We ran these tests independently, i.e., information in the priority queue was not shared among them.
14For the experiment that requests only the top pair we did not use feedback, since there is not enough information

to meaningfully compute a new distance function. Instead we used the per-iteration distance functions of the top
100 query.
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(excluding priority queue overhead) for the queries. Nested loop join (ignoring sort time) takes
roughly 22 minutes to complete this query even when both datasets fit entirely in memory. This
is due to the very high number of distance computations required. The total response time using
the reconstruction approach is typically 3-4 times faster than using the naive approach. Overall,
the reconstruction technique significantly outperforms the naive approach or the nested loop join
technique.

8.7 Conclusion

Top-k selection queries are becoming common in many modern-day database applications like
multimedia retrieval and e-commerce applications. In such queries, the user specifies target values
for certain attributes and expects the “top k” objects that best match the specified values. Due
to the user subjectivity involved in such queries, the answers returned by the system often do not
satisfy the user’s need right away. In such cases, the system allows the user to refine the query and
get back a better set of answers. Despite much research on query refinement models, there is no
work that we are aware of on supporting refinement of top-k queries efficiently in a database system.
Done naively, each ‘refined’ query is treated as a ‘starting’ query and evaluated from scratch. We
propose several techniques to evaluate refined queries efficiently. Our techniques save most of the
execution cost of the refined queries by appropriately exploiting the information generated during
the previous iterations of the query. Our experiments show that the proposed techniques provide
significant improvement over the naive approach in terms of the execution cost of refined queries.
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Chapter 9

Case Study

9.1 Introduction

To explore the usefulness and feasibility of our work in real world applications, we set out to
construct two catalog based applications. The first application is a catalog based clothing store
where users can search for clothes based on images of garments, price, description, etc. As users
explore the store, they provide feedback that guides the query and results in improved answers.
The second application we explore is that of online car shopping. Users can search a variety of
used cars using multiple criteria and interactively refine their queries to improve their results.
We also implemented this second application in a commercial database system to contrast both,
development time and system performance. The results are very encouraging.

9.2 Garment Search

In this case study, we show a possible application for clothing retrieval where the price, description
and image content are used to search garments. We first give an overview of the features used
and then show an interaction with our prototype system and some example screen shots of the
equivalent interaction.

We built a Java based front end user interface for the garment search application that lets users
browse, construct queries and refine answers. Users construct queries by selecting one or more
values for each attribute (single– or multi–point similarity predicate). Values are provided either
directly by typing in the value, or indirectly, by selecting example attribute values while browsing
the collection. The image attribute is the only one for which selecting examples is the only choice
since searching is done on the color and texture feature values and it is virtually impossible for users
to type in sensible values for these attributes. The user interface then generates a SQL statement
which is sent to our prototype for querying and displays the best answers in rank order. We display
10 answers at a time and let the user scroll through multiple screens. While viewing answers, users
can indicate that the entire answer is relevant through a checkbox at the left side of the tuple,
or give detailed column level feedback by exploring the item in detail. Feedback on the image is
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converted to feedback on the image feature attributes.

9.2.1 Features Used

The retrieval performance of any similarity matching system is inherently limited by the nature
and the quality of the features used to represent the objects content. Features representations for
various domains such as image retrieval, time-series retrieval, video retrieval and others are a very
active research area. This section gives a brief overview of the content based features we use for
our case study.

9.2.1.1 Image Features

We make use of the color, texture and shape features. These are described in detail in appendix A.
For the image features we use the intra-predicate feedback algorithms discussed in chapter 7.

9.2.1.2 Text Features

IR technology is directly applicable to text-based retrieval for multimedia objects. Objects in IR are
referred to as documents. Each document is viewed as a very high multidimensional vector where
each word (term) represents a dimension. Note that commonly used words – such as, is, has, I, he
– are ignored since they are not useful for retrieval (stop list). Let wij (term weight) be the value in
dimension j of the vector representation for document i. wij is computed as tf×idf where tf (term
frequency) of wij is the frequency of term j in document i and idf (inverse document frequency) for
term j is computed as log N

n where N is the total number of documents in the collection and n is
the number of documents that contain term j. Finally, each vector is normalized to a length of 1
which simplifies similarity computations; i.e., wij = wij/

√∑m
j=1 w2

ij where m is the total number
of terms (dimensions) in the document space, see [168] for more optimizations of text matching.
Cosine Similarity (cosine) is used to compute the similarity between two documents (Doci and
Docq) [137].

cos(Doci, Docq) =
m∑

j=1

wij wqj (9.1)

Similar to the relationship between the histogram intersection and the Manhattan distance, the
cosine similarity is a function of the Euclidean distance (L2-distance) as shown in (9.2).

cos(Di, Dq) = 1− (L2(Doci, Docq))2

2
where L2(Di, Dq) =

√√√√
m∑

j=1

( wij − wqj )2 (9.2)

For refinement, we use the query point movement approach presented in chapter 7.
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9.2.2 Using Our System

Now that we know the features used, we turn to explore how they can be used in our prototype
database system.

First, we create the types for each non-built in type:

create type ImageThumbnail (an im blob) functions "types dll/types.so:create(13)"

create type ColorHistogram float(32) functions "types dll/types.so:create(14)"

create type CoocTexture float(16) functions "types dll/types.so:create(16)"

create type norfloat (x float) functions "types dll/types.so:create(12)"

create type varcharindex (x varchar) functions "types dll/types.so:create(8)"

For each type, its structure is specified followed by a specification of a dynamic library in
which to find the functions that implement the type (see section 3.2). The ImageThumbnail is
a structure with a single data value of type blob and is used to store a reduced version of an
image, a thumbnail. ColorHistogram and CoocTexture are floating point number arrays and their
features work as described above in section 9.2.1. Norfloat is a single floating point number, but
it is normalized as a Gaussian sequence, each time a number is inserted, sufficient meta-data is
kept to perform the necessary normalization at query time. The varcharindex type is based on the
varchar character string type but augments it with the desired similarity functions described above
in section 9.2.1.

Now, we create a table to store our data:

create table esearch(

gender char,

manuf varcharindex,

short desc varcharindex,

price norfloat,

thumbnail ImageThumbnail,

histogram ColorHistogram,

texture CoocTexture)

fragment (2) with extent (200,200)

tid (2) with extent (200,200)

put "thumbnail.an im" into (2) with extent (200,200)

functions "tables dll/tables.so:create table interface(1)"

This table has columns for our garment data, with the gender as a single character, the manufac-
turer and a short description are text fields that are enabled for similarity searching, price is a
normalized number, and finally the image data: thumbnail, color histogram and texture. The rest
of the table definition indicates to stripe the table and the tid index over disk 2 only and uses 200
pages as the primary and secondary extents. The blob in the thumbnail is also stored in disk 2.
The final specification is of the table functions needed, which in this case implement the standard
table interfaces.

Before we can use our new table we need to specify some helpful indices:
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create index esearch manuf idx

table esearch(manuf)

using text vector model(0)

fragment (2) with extent (50,50)

create index esearch short desc idx

table esearch(short desc)

using text vector model(0)

fragment (2) with extent (50,50)

These indices over the text fields support the above described text vector model and are also stored
on disk 2 with primary and secondary extent sizes of 50.

Now, we are ready to insert some data:

insert into esearch values ("M", "Eddie Bauer", "Fleece Jacket",

"59.99", [1], [1], [1]) #file:image.jpg#

Since images cannot be readily typed into a textual interface, they are sent as blobs with our client–
server library. The image itself is in the file image.jpg and is loaded by the client side and transferred
as a blob to the server which finds the image for the thumbnail, histogram and texture in the first
position of extra blob attributes. Each tuple upon insertion is assigned a unique tuple id (tid) that
identifies that tuple in the table.

We populated this table with sample data from various apparel web sites1, we collected 1747
garment item descriptions of a variety of garment types including pants, shirts, jackets, and dresses.

With the datase loaded, we now turn to performing a query:

select garments with price, manuf, thumbnail, histogram, texture

from esearch

where

gender = "F"

and

price ∼= "80.00" ∼and histogram ∼= (50,60) ∼and texture ∼= (50,60)

Here, garments is the name we have given to our session query and is the handle we can use
to submit feedback. The user has indicated he wants female garments and a desired target
price of 80 dollars, and wants images that are similar to the color histogram and texture of
images 50 and 60 which are stored in the table, thus using a multi-point query. This con-
dition will be separated into the crisp condition gender = ”F” and the similarity condition
price ∼= ”80.00” ∼ and histogram ∼= (50, 60) ∼ and texture ∼= (50, 60).

Assuming the user has seen the first few results and selects feedback similarly to this table:

tid price manufacturer thumbnail histogram texture

415
√ √

–
√

–
319

√ √ √ √ √

128 – – – × √

To send this information to the database server we use the following:
1The sources used are: JCrew, Eddie Bauer, Landsend, Polo, Altrec, Bluefly, and REI.
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Figure 9.1: Query Results

insert feedback into garments tid = 415 feedback=0 values (1, 1, 0, 3, 0)

insert feedback into garments tid = 319 feedback=1 values (1, 1, 1, 1, 1)

insert feedback into garments tid = 128 feedback=0 values (0, 0, 0, -2, 2)

This gives the illusion of a feedback table with the same number of columns as the result. The
user can then submit feedback on a tuple level by using the feedback=X value and/or individually
in a column by column way. Here, for the tuple 415 the user indicates that the price and the
manufacturer are in fact desirable and the color is very desirable. For tuple 319, all values are
good, and for tuple 128, the color is not at all interesting, but the texture is very nice, perhaps it
is a striped pattern.

Once the user has submitted the feedback, we refine the query and obtain new results:

select garments feedback

This is similar to the select statement above, but now we do not specify the table or tables involved
nor the conditions. In response to the user supplied information, the query has been changed and
the results incrementally modified. The garments session query identifier represents to the database
server the session query or iterative query that is meant.

Now, the user can continue her browsing of the result, submit more feedback and refine the
query until done.

An example user interface that uses these commands was developed and is shown in figures 9.1,
9.2, and 9.3. Figure 9.1 shows the original results for a query and two tuples marked for feedback,
then figure 9.2 shows the results of the first feedback iteration and also shows some tuples marked
for feedback, the application of which results in the answers shown in figure 9.3.
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Figure 9.2: First Feedback Iteration Results

Figure 9.3: Second Feedback Iteration Results
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9.3 Used Car Search

For this demo, we use a dataset containing information of about 8000 used cars. We obtained
this dataset from the web. The original dataset had more than 50 attributes; we selected the
following attributes for this demo: car make and model, year, mileage, price, savings, exterior
color, class, transmission, options and location (city, state, zip and geographical location (latitude
and longitude)). We allow searching based on some attributes; others are just informational in
nature. For each searchable attribute, we developed a custom data type that defines the notion of
similarity and refinement for that attribute. For example, the similarity function of the make model
data type specifies that a Honda Accord is much more similar to a Toyota Camry than to a Ford
Explorer SUV. These data types were then simply plugged into the database engine. It took
about 1.5 person weeks to build the data types, including the time to fine-tune the similarity
and refinement functions for this application. A simple web-based user interface was developed in
an additional 0.5 person weeks. Below we report 2 representative queries and their results. The
results demonstrate the effectiveness of our approach for database applications that require flexible
searching. We also implemented this application as a wrapper on top of Informix to compare its
performance to our system. We implemented the similarity predicates as user defined functions
and had to extend them with a threshold to limit the results to the top-k answers.

Example 9.3.1 Example 1: A user Alice is looking for a Honda Accord (around 1997), priced
around $12000. She stays in Irvine (zip code 92612). Figure 9.4 is the first screen of results for
Alice’s query. Alice is conscious about the price but is willing to drive to Bay Area (around 400
miles) to get a good deal. So she marks item 6218 as relevant. Figure 9.5 shows the first screen of
refined results.

Example 9.3.2 Cathy is looking for a pearl colored Acura Integra around Irvine (zip code 92612).
Figure 9.6 is the first screen of results for Cathy’s query. There is no pearl Acura Integra in the
database. The system returns pearl colored cars with similar models (e.g., Honda Accord, Toyota
Camry, Nissan Altima etc.) in addition to a silver colored Acura Integra. The silver colored Acura
Integra (item 4227) is acceptable to Cathy. Figure 9.7 is the first screen of refined results.

9.3.1 Comparison to a Commercial Database Engine

In order to make the comparison, we simulate similarity searching for the automotive application
using a straightforward wrapper approach. In the wrapper, the query values for the specified
attributes are converted to ranges and the range query is submitted to the database. The retrieved
answers are scored and sorted based on the similarity functions before returning them to the user.
We used the latest release of the Informix Universal Server for this experiment.

We distinguish ourselves from a wrapper approach using a commercial database in several ways:
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Figure 9.4: First Screen for Alice

Figure 9.5: Refined Results for Alice
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Figure 9.6: First Screen for Cathy

Figure 9.7: Refined Results for Alice
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• Functionality. We provide native support for similarity search and query refinement. Simi-
larity search can be implemented as a wrapper on top of a database, but doing this for query
refinement is much more difficult.

• Eliminate guesswork. We incrementally compute the next best set of answers. Therefore
we eliminate the feared “there are 632 answers to your query” phenomenon and just keep
returning the next best set of answers if and when the user asks for it. On the other hand, the
wrapper approach constructs a query range for each attribute and executes the range query in
one go. Properly guessing the query ranges is nearly impossible since (1) different queries need
different ranges (2) under-guessing eliminates good candidate answers (false negatives), and
(3) over-guessing includes too many irrelevant answers (false positives), the sorting of which
slows retrieval and produces the dreaded “there are 632 answers to your query” message.

• Speed. By natively supporting similarity retrieval, we can evaluate a query much faster than
traditional databases. For refined queries, we reduce the response time by reusing old answers.

In the remainder of section, we compare the Informix wrapper approach and our approach for
two queries.
Query 1 Consider a user in Livermore, CA that wants to buy a 1997 Honda Accord for around
$12,000. This user is however open to travel towards the Bay area where there is a higher concen-
tration on vehicles. The search conditions of the above query are: (make=Honda) (model=Accord)
(price=$12000) (year=1997) (location=Livermore, CA, 94550).

We first run an equivalent exact query in Informix, i.e., range condition only for price (equality
condition for others). This is consistent with current practices where a range of years has to be
specified explicitly, and location is bounded by a fixed distance from the users zip code. This exact
query returned just 4 answers as there were no cars very close to Livermore in this dataset. Next
we ran the query with relaxed conditions on each attribute, i.e., range conditions for year, location,
price, etc. The ranges were adjusted such that the similarity functions return 0 for values outside
of these ranges. This results in a very large numbers answers that need to be scored and sorted,
making it extremely slow. Then, we ran the query in our database followed by one iteration of
query refinement. As a final experiment, we tried to adjust the ranges for the wrapper so that
there are about 40 answers (corresponding to 4 screens of results). We had to adjust the ranges 3
times to get reasonably close.

The results for this query are shown in table 9.1. The results for Informix are generally much
worse than for our system, both in terms of speed and well as the quality of answers. In terms of
speed, Informix is slow as it first has to retrieve all answers that satisfy the specified ranges, and
only then can it start to sort on similarity values. Informix relaxed is the slowest among all the
wrapper approaches as the number of satisfying answers is the highest in this case. We, on the
other hand, compute the answers incrementally (e.g., top 10 answers initially, next 10 when the
user asks for the next 10, etc.) and is hence much faster. In this case, refinement is as fast as an
initial query, but this includes the query reformulation time, the execution time is less than before.
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Query Execution time Number of answers
Informix exact 4 seconds 4
Informix relaxed 160 seconds 406
Our database 0.8 seconds 40 (as requested by user)
Our database (refined) 0.8 seconds 40 (as requested by user)
Informix adjusted 30 seconds 51 (closer to 40 requested)

Table 9.1: Informix vs. Our System for Query 1

Query Execution time Number of answers
Informix exact 3 seconds 2 answers
Informix relaxed 183 seconds 447 answers
Our database 0.8 seconds 40 answers (as requested by user)
Our database (refined) 0.8 seconds 40 answers (as requested by user)
Informix adjusted 23 seconds 46 answers (closer to 40 requested)

Table 9.2: Informix vs. Our System for Query 2

In terms of quality, Informix exact produced the worst results as it left out many relevant
vehicles. Informix adjusted produced better quality results in comparison to Informix exact but
still missed some relevant vehicles. For example, a 1997 Honda Accord in Stanford, CA, priced at
$13600 (tid=5811), arguably a good answer is listed by us in 13th place, but is absent from the
51 answers of the Informix adjusted approach. In fact, the Informix adjusted approach did not
retrieve 11 of the top 40 answers due to imperfect ranges; this illustrates the difficulty of selecting
the right ranges for all the attributes and how easy it is to lose valuable answers in the wrapper
approach. The Informix relaxed approach avoids such dismissals by fully relaxing the ranges and
hence produced the same answers as our system (since they have the same similarity functions)
but, as mentioned before, is extremely slow.
Query 2 Consider a user looking for a blue Honda Accord around Irvine, CA, 92612.

Repeating the previous experiment, we have the results shown in table 9.2. This example
required 6 rounds of range adjustments to get within 20% of 40 top answers (as returned by us),
with results ranging from 24 to 120 answers depending on the setting of ranges.

138



Chapter 10

Conclusions

Extensions to current systems in supporting abstract data types and their processing and opti-
mization has received a large amount of research attention, yet another challenge facing existing
systems (which has not received much research attention) is the restrictive nature of the retrieval
model supported. Database systems currently support only the very basic precise retrieval model
outlined in section 2.

We aim to extend database systems from traditional relational databases into extensible object-
relational systems that facilitate the development of applications that require storage and retrieval
of objects based on their content. Retrieval is performed based on computing similarity between
the objects and queries based on their content feature values producing results that are ranked
based on the computed similarity values.

A very important aspect of content based retrieval is the process of query refinement. Query
refinement is important due to the subjectivity of human perception and since it may be difficult
to construct a good starting query in exploratory data browsing. Refinement is a very different
paradigm compared to the existing database interface that does not allow for iterative queries given
its precise query paradigm. Refinement is not just a matter of adding an algorithm to learn a users
intention from feedback. It changes the data model, indexing mechanism, and query processing. In
a typical refinement, a subsequent query is very similar to the previous one. This has very profound
impact on query processing and optimizations. Research on incorporating refinement in databases
is in its infancy and we believe it is among the most important directions of future work.

We are building a prototype system that implements the content based retrieval approach we
advocate and evaluate the usefulness of such a system from qualitative and quantitative points
of view. The increased functionality offered by our model introduces a data model where the
correctness of answers is ill-defined and thus requires a qualitative evaluation involving the users
perception of and interaction with the system. Conversely, ample optimization opportunities exist
in such a scenario where considerable overlap between successive queries exists. We are confident
that our approach fulfills many requirements faced by current applications.
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Appendix A

Image Feature Descriptions

A.1 Introduction

The retrieval performance of any similarity matching system is inherently limited by the nature
and the quality of the features used to represent the objects content. Feature representations for
various domains such as image retrieval, time-series retrieval, video retrieval and others are a very
active research area.

Under the MARS umbrella, the goal of our work is intimately tied to image retrieval. In this
appendix we give an overview of the features we extract from images and their corresponding
similarity functions. We have focussed on two different modes of characterizing images: the color
space, the texture space, and the shape space. For color and texture, we adapted the relevant
work from the literature to our context, these are discussed in sections A.2 and A.3. For shape, we
developed a new feature representation, which we present in section A.4. Note that all our image
features are multidimensional feature vectors.

A.2 Color

Color is one of the most dominant features in images. The typical color encoding used in color
images is in the RGB format which represents the amount of red, green, and blue colors of each
pixel. However the RGB color scheme is geared towards how hardware manages color, not the
human perception of color. Alternate color schemes are introduced to capture human perception;
for example, HSV (hue, saturation, and value) and L*u*v* (lightness, chromatic coordinates).
Interested readers are referred to [15] for details. We use the color histogram feature in the HSV
space and ignore the V component as it is influenced by lighting of the scene.

Color histogram extraction discretizes image colors into bins and counts how many pixels belong
to each color bin (see Figure A.1). M. Swain and D. Ballard [158] proposed Histogram Intersection
(HI) as the similarity function for computing the similarity between two images based on their color
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Figure A.1: Color Histogram
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Figure A.2: Histogram Intersection

histograms. Histogram intersection is defined as follows:

HI(i, j) =
n∑

k=1

min(Hi(k),Hj(k)) (A.1)

where Hi and Hj are color histograms of images i and j, H(k) is the number of pixels in bin k,
and n is the total number of histogram bins (see Figure A.2). Note that the total number of pixels
in each image is normalized to 1 to establish fairness among images of different sizes. A color
histogram of an image can be viewed as an n-dimensional vector and the histogram intersection
of two color histograms is a linear function of Manhattan distance (L1-distance) between the two
color histogram vectors as shown in (A.2).

HI(i, j) = 1− L1(i, j)
2

where L1(i, j) =
n∑

k=1

| Hi(k)−Hj(k) | (A.2)

Color histogram is commonly used since it is simple and fast to compute. However, since color
histogram ignores spatial information of colors, images with very different layouts may have similar
color histogram representations which cause false admission in similarity retrieval.
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A.3 Texture

Texture is one of the most difficult features for a person to describe in words. Texture is not a
property of a single pixel in an image but rather a visual pattern formed by a contiguous region of
pixels in the image. Many existing texture extraction algorithms exist in the image processing lit-
erature. Different approaches capture different properties of textures. For example, Co-occurrence
Matrix [58, 15] captures energy, entropy, contrast, and homogeneity among other properties in
an image. Wold Decomposition [96] captures repetitiveness, directionality, and complexity of an
image. Wavelet Texture [99] captures the patterns of color differences of an image. We use the
Co-occurrence Matrix texture representation as an example of a texture extraction algorithm.

In the Co-occurrence Matrix texture approach, the color of each pixel of an image is converted
to a 16-grey-scale value. Four 16-by-16 co-occurrence matrices Ck, k = 1, 2, ..., 4 are constructed
to capture the spatial relationship among pixels and their neighbors in each of the four directions:
up-down, left-right, and the two diagonals. That is, Ck[i, j] indicates the relative frequency at
which two pixels of grey-scale value i and j are neighbors of each other in the k direction. Based on
these matrices of co-occurrence, a subset of several characteristic properties is computed for each
of the matrices:

energyk =
∑

i,j

Ck[i, j]2 (A.3)

entropyk =
∑

i,j

Ck[i, j] log(Ck[i, j]) (A.4)

contrastk =
∑

i,j

(i− j)2 Ck[i, j] (A.5)

homogeneityk =
∑

i,j

Ck[i, j]
1 + |i− j| (A.6)

These values form a 16–dimensional vector and the Euclidean distance function between these vec-
tors is used to compute the dis-similarity between corresponding images. For details on converting
distance based metrics to similarity values, see section A.5.

A.4 Shape

Large repositories of digital images are becoming increasingly common in many application areas
such as e-commerce, medicine, media/entertainment, education and manufacturing. There is an
increasing application need to search these repositories based on their visual content. For example,
in e-commerce applications, shoppers would like to find items in the store based on, in addition to
other criteria like category and price, visual criteria i.e. items that look like a selected item (e.g.,
all shirts having the same color/pattern as a chosen one). To address this need, we are building the
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Multimedia Analysis and Retrieval System (MARS), a system for effective and efficient content-
based searching and browsing of large scale multimedia repositories [115]. MARS represents the
content of images using visual features like color, texture and shape along with textual descriptions.
The similarity between two images is defined as a combination of their similarities based on the
individual features [115].

One of the most important features that represent the visual content of an image is the shape of
the object(s) in an image [43, 97, 101, 79]. In this paper, we address the problem of similar shape
retrieval in MARS. We propose a novel adaptive resolution (AR) representation of 2-d shapes. We
show that our representation is invariant to scale, translation and rotation. We show how each
shape, represented by AR, can be mapped to a point in a high dimensional space and can hence
be indexed using a multidimensional index structure [25]. We define a distance measure for shapes
and discuss how similarity queries, based on the above distance measure, can be executed efficiently
using the index structure. The experimental results demonstrate the effectiveness of our approach
and its superiority to the fixed resolution (FR) technique previously proposed in the literature.

A.4.1 Related Work

In this section, we describe the fixed resolution approach and other prior work on shape retrieval.

Fixed Resolution (FR) Representation

In the FR approach proposed by Lu and Sajjanhar [97], a grid, just big enough to cover the entire
shape, is overlaid on the shape. Each cell of the grid has the same size (hence the name fixed
resolution). For example, in figure A.3(a), the shape is overlaid with a 8× 8 grid. If we assume the
grid to be 256× 256 pixels, each cell is 32× 32 pixels in size. Some grid cells are fully or partially
covered by the shape and some are not. A bitmap is derived for the shape by assigning 1 to any
cell with more than 15% of the pixels covered by the shape, and 0 to each of the other cells. The
shape represented by the bitmap is shown in figure A.3(a) (below the 8 × 8 grid overlay). The
quality of the representation (i.e. how closely it approximates the actual shape) improves as we go
to higher resolutions. Figure A.3(b) shows that a higher resolution bitmap (16×16 grid) represents
the better (i.e. closer approximation to the original shape) than the 8× 8 representation.

To support similarity queries, [97] defines a distance measure between shapes. The distance
between two shapes is defined as the number of bits by which their bitmaps differ from each other.
A similarity query computes the distance of the query shape from every shape in the database and
returns the k closest matches as answers to the user. [97] shows that the higher the resolution,
the more closely it approximates the actual shape, higher the accuracy of the answers (in terms
of satisfying the information need of the user). But high resolution also raises the query cost: at
higher resolutions, we need more bits to represent each shape which increases both the I/O cost (as
we need to scan a larger sized database) as well as the CPU cost (as we need to compute distances
between longer bit sequences) of the query. The choice of the resolution thus presents a tradeoff
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between the query cost and accuracy.

Indexing in FR Approach

There is no obvious way to index bitmaps. The only way to answer a similarity query is to
sequentially scan the entire database i.e. compute the distance of the query from every item in the
database. This technique is not scalable to large databases consisting of millions of shapes as it may
take minutes or even hours to answer a query. To circumvent the problem, we propose to index the
shapes using a multidimensional index structure (e.g., R-tree, SS-tree, Hybrid Tree). The index
structure would reduce the cost of the query from linear (of sequential scan) to logarithmic to the
size of the database, thus making the similarity queries scale to large sized databases. To use the
index, instead of assigning a bit to a grid cell, we assign a count to each cell: the count being the
number of pixels in the cell that are covered by the shape. For a 8×8 grid, we will get 64 values for
each shape, thus mapping each shape to a point in a 64-dimensional space. The shapes can now be
indexed using a 64-d point index structure. For a n1×n2 grid, the number of dimensions d = n1.n2.
We can use a suitable Lp metric as the distance measure between the d-dimensional vectors. Given
a query which is also a point in the d-dimensional space, we can use the index structure to quickly
find the k shapes that are closest to the query using the standard k nearest neighbor algorithm
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[70]. As mentioned before, higher the resolution, more the dimensionality, higher the accuracy of
the answers, but higher the execution cost of the query. We will refer to this count-based (and not
the bit-based) representation as the FR representation for the rest of the paper.

Other Shape Retrieval Techniques

Other shape representation techniques include Fourier descriptors [135], moment descriptors [43],
boundary points [101] and rectangle decomposition [79]. Recent studies have shown that the FR
approach performs better than most of these approaches [97].

A.4.2 Adaptive Resolution Approach

Rotation, Scale and Translation Normalization

Before we present the new shape representation, we describe how we normalize the shape to make
it invariant to rotation, scale and translation. Our normalization strategy is similar to that of
[97] developed for the FR representation. To guarantee rotation invariance, we need to convert an
arbitrarily oriented shape into a unique common orientation. We first find the major axis of the
shape i.e. the straight line segment joining the two points P1 and P2 on the boundary farthest
away from each other [97]. Then we rotate the shape so that its major axis is parallel to the x-axis.
This orientation is still not unique as there are two possibilities: P1 can be on the left or on the
right. We solve the problem by computing the centroid of the polygon and making sure that the
centroid is below the major axis, thus guaranteeing an unique orientation. Let us now consider
scale invariance. We define the bounding rectangle (BR) of a shape as the rectangle with sides
parallel to the x and y axes just large enough to cover the entire shape (after rotation). Note
that the width of the BR is equal to the length of the major axis. To achieve scale invariance,
we proportionally scale all shapes so that their BRs have the same fixed width. In this paper,
we fix the width of the BR to 256 pixels. We make the BR a square by fixing its height to 256
pixels as well; non-square shapes are handled by placing the shape at the bottom of the BR and
padding zeroes in the remaining (upper) part of the BR. The shape is translation invariant as it is
represented with respect to its BR (i.e. lower left corner of BR is considered (0,0)).

Adaptive Resolution Representation

The problem with the FR representation is that it uses the same resolution to represent the entire
shape. There are certain portions of the shape where low resolution is sufficient i.e. increasing the
resolution does not improve the quality of the representation for these portions of the shape (e.g.,
the lower rectangular portion of the shape in figures A.3(a) and (b)). Using high resolution for
these regions increases the number of dimensions without improving the query accuracy. On the
other hand, there are portions of the shape (e.g., the upper portion of the shape in figures A.3(a)
and (b)) where higher resolution improves the quality of the representation significantly. For these
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regions, the improvement in query accuracy obtained by using high resolution is worth the extra
cost of having more dimensions. Also, high resolution is usually not necessary for the interior of
a shape but is important near the border of the shape. Having the same resolution for the entire
shape is wasteful in terms of the number of dimensions used to represent the shape and hence the
query cost.

To overcome the shortcomings of the FR representation, we propose an adaptive resolution
(AR) representation of shapes i.e. a representation where the resolution of the grid cells varies
from one portion of the shape to another, having higher resolution where it improves the quality
of representation and lower resolution where it does not. An adaptive representation of the same
shape is shown in figure A.3(c). It uses 16 grid cells to represent the entire shape but the cells
have different resolutions (i.e. sizes). The cells in the lower portion and interior of the shape have
lower resolution (i.e. larger size) while those in the upper portion and near the borders have higher
resolution (i.e. smaller size). Figure A.3(d) shows another adaptive representation of the same
shape with 32 grid cells. Note that as the number of cells increases, more cells are added to the
portion of the shape where higher resolution is required while the other portions remain unchanged.

Computing AR Representation Using Quadtree Decomposition

We compute the AR representation of a shape by applying quadtree decomposition on the bitmap
representation of the shape. The bitmap is constructed in the same way as the FR approach
discussed in [97] (cf. section A.4.1). We use the highest resolution bitmap for the decomposition
(i.e. each grid cell is 1 × 1 pixels) but lower resolution bitmaps could be used as well. The
decomposition is based on successive subdivision of the bitmap into four equal-size quadrants. If a
bitmap-quadrant does not consist entirely of 1s or entirely of 0s (i.e. the shape “partially covers” the
quadrant), it is recursively subdivided into smaller and smaller quadrants until we reach bitmap-
quadrants, possibly 1 × 1 pixels in size, that consist entirely of 1s or entirely of 0s (termination
condition of the recursion). Figure A.4(a) shows a 8 × 8 bitmap of the shape in figure A.3 and
figure A.4(b) shows the quadtree decomposition of the bitmap. Each node in the quadtree covers a
rectangular (always square) region of the bitmap. The level of the node in the quad tree determines
the size of the rectangle. The internal nodes (shown by gray circles) represent “partially covered”
regions, the leaf nodes shown by white boxes represent regions with all 0s while the leaf nodes
shown by black boxes represent regions with all 1s. The “all 1” regions are used to represent the
shape. Figure A.4(b) has 16 such rectangular regions and the shape represented is shown in figure
A.4(c). Since we perform the quadtree decomposition on the 256×256 bitmap, the number of black
leaf nodes in the quadtree is usually far more than the number n of rectangles we want to choose
to represent the shape. In that case, we choose the n largest rectangles i.e. we do not choose any
black leaf node at level i unless we have chosen all the black leaf nodes at level j, j < i where the
levels are numbered in increasing order from top to bottom. In this way, we can cover the bulk
of the shape with a few rectangles (i.e. small values of n) and add details to the shape as we add
more rectangles (i.e. larger values of n).
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Distance(int *shape1, int *shape2)

i=0, j=0;
while (i < n AND j < n)

if ith rect r1 of shape1 overlaps with jth rect r2 of shape2
common area += Overlap Area(r1, r2);
if (r1 is bigger than r2) j++;
else i++;

else // r1 and r2 do not overlap
if (ZValue(r1) > ZValue(r2)) j++;
else i++;

area of shape1 = Σ(n−1)
i=0 Area of ith rectangle;

area of shape2 = Σ(n−1)
i=0 Area of ith rectangle;

union area = area of shape1 + area of shape2 - common area;
distance = 1 - common area

union area ;
return distance;

Table A.1: Computing Distance between two Shapes

Indexing

After the n rectangles are chosen, we sort them based on z-order. The number sequence assigned
to the black leaf nodes of the quad tree in figure A.4(b) represent the z-order. The same numbers
are shown on the corresponding rectangles in figure A.4(c). Note that the z-ordering is simply a
left-to-right ordering of the n selected black leaf nodes in the quad tree. We represent the shape
as a sequence of the n rectangles. Since the rectangles are always squares, we can describe each
rectangles by 3 numbers: its center C = (Cx, Cy) and its size (i.e. side length) S. We represent the
shape as a sequence of 3n numbers where 3i, 3i+1 and 3i+2 numbers represent the Cx, Cy and S

of the ith rectangle (0 ≤ i ≤ (n−1)) in the n-sequence. We have thus mapped each shape to a point
in 3n-dimensional space. We can now index the shapes using a 3n-dimensional index structure.
The choice of n depends on the desired dimensionality d of the index structure i.e. n = d

3 .

Executing Similarity Queries Using Multidimensional Index Structure

To support similarity queries, we must first choose a distance measure between shapes. We choose
the popular “area difference” distance measure previously used in [97, 79]. The area difference
is the area of the regions where the two shapes do not match when they are overlaid on each
other. To normalize the measure, we divide the area difference by the area covered by the two
shapes together i.e. area of the union of the two shapes. To be able to answer similarity queries
using a multidimensional index structure, we should be able to efficiently compute (1) the distance
between two points i.e. between two shapes represented using the AR representation and (2) the
minimum distance (MINDIST) between a point and a node of the multidimensional index structure
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[25]. Once we can compute the above distances, we can answer a similarity query by executing the
k-NN algorithm on the multidimensional index structure [70]. The algorithm works as follows. It
maintains the nodes and objects of the index structure in the priority queue in increasing order of
their distances from the query and uses the queue to traverse the tree in the same order. At each
step, it pops the item from the top of the queue: if it is an object, it is added to the result list, if
it is a node, it computes, using the above distance functions, the distance of each of its children
from the query and pushes it back to the queue. The algorithm stops when the result set contains
k objects. We first present the function to compute the distance between two points. Given two
shapes s1 and s2 consisting of n rectangles each (i.e. represented as 3n-dimensional points), a naive
way to compute the distance is to compare all pairs of rectangles and compute the distance between
them. This approach is computationally expensive (O(n2)). We exploit the following properties
of Z-ordering to compute the distance in O(n) time. Let r1 and r2 be two rectangles of s1 and
s2 respectively. First, if r1 and r2 do not overlap with each other and ZV alue(r1) > ZV alue(r2)
and r1′ is a rectangle in s1 that appears after r1 (i.e. ZV alue(r1′) > ZV alue(r1)), then r1′

and r2 do not overlap with each other. Second, if r1 and r2 overlap with each other and r1 is
larger than r2 (i.e. r1 is totally covers r2) and r1′ is a rectangle in s1 that appears after r1 (i.e.
ZV alue(r1′) > ZV alue(r1)), then r1′ and r2 do not overlap with each other. The procedure to
compute the distance is shown in Table A.1. We have also designed an algorithm to compute the
MINDIST i.e. the minimum distance between a point and node of the index structure. We can
now answer similarity queries efficiently by executing it as a k-NN query on the multidimensional
index structure.

Optimization

The quality of the representation (and hence the accuracy of the answers) increases with the number
of rectangles, but so does the dimensionality and hence the query cost. We present an optimization
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that increases the number of rectangles without increasing the number of dimensions. We merge
rectangles together if they are (1) “mergeable” i.e. produce a rectangle when merged and (2) appear
consecutively in the z-ordered sequence. Figure A.4(d) shows the set of rectangles in figure A.4(c)
after the merging. Since this representation is more compact (i.e. we can represent the same shape
with less number of rectangles), for a given choice of dimensionality d, we can represent the shape
more accurately. The merging based on z-order ensures that the distance functions described above
can be used with some minor modifications. Unlike in the unmerged representation, the rectangles
in the merged representation can be non-squares; hence, we need to store two sizes Sx and Sy for
each rectangle instead of one. To represent n rectangles, we need 4n numbers instead of 3n. For a
desired dimensionality d, the number of rectangles to choose to represent the shape is d

4 instead of
d
3 .

A.4.3 Experiments

We conducted several experiments to evaluate the effectiveness of the AR representation and com-
pare it with the FR representation. For our experiments, we used the “islands” file in the polygon
dataset of the Sequoia benchmark.1 The dataset contains 21,021 shapes. For a given query, we
generate the ground truth by executing the query against the highest resolution bitmap represen-
tation of the shape (i.e. each grid cell is 1 × 1 pixel) and retrieve the top k answers. We refer to
these answers as the relevant set. We then execute the query against a given low resolution FR
representation using the index structure and retrieve the top k answers. We refer to these answers
as the retrieved set. We compare the relevant and retrieved sets for various values of k (we vary
k from 10 to 100) and we plot the precision (defined as |relevant∩retrieved|

|retrieved| ) and recall (defined as
|relevant∩retrieved|

|relevant| ) graphs for various resolutions (4× 4, 8× 4, 8× 8, 16× 8 and 16× 16). The result
is shown in figure A.5. All the measurements are averaged over 100 queries. The graph shows that
the quality of the answers improves as the resolution increases. We repeat the above experiment
for the AR representation. The result is shown in figure A.6. The graph shows that the quality of
the answers improves with the increase in the number of rectangles. Note that we are doubling the
number of dimensions at each step in both cases but the improvement in the quality of answers
at each step is more significant in the AR technique compared to the FR technique. The reason
is that in the AR case, the additional rectangles concentrate on improving the representation only
where it is necessary. On the other hand, in the FR case, the resolution is increased equally all
over, as much in the unnecessary portions as in the necessary ones, thus diluting the effect and not
improving the quality of representation as much as in AR case.

We compare the two techniques in terms of the quality of retrieval when the same number of
dimensions are used to represent the shape. For a given recall, we compute the precision of the
two techniques at a given dimensionality. Note that for the FR presentation of n1× n2 resolution,
the dimensionality is n1.n2 while for the AR approach with n rectangles, the dimensionality is 4n.

1Available online at http://s2k-ftp.cs.berkeley.edu:8000/sequoia/benchmark/polygon/.
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In figure A.7, we plot the precision at 100% recall for various dimensionalities for both techniques.
The AR technique significantly outperforms the FR technique in terms of precision at almost all
dimensionalities. For example, at 100 dimensions, the AR technique has about 70% precision while
the FR technique has about 50% precision. We observed similar behaviour at other values of recall.
This shows that AR is a more compact representation i.e. with the same number of dimensions,
AR approximates the original shape better than FR and hence provides higher precision. Assuming
that the query cost is proportional to the number of dimensions used2, the AR technique provides
significantly better quality answers at the same cost and is hence a better approach to shape
retrieval.

A.4.4 Conclusion

Similar shape retrieval is an important problem with a wide range of applications. In this paper,
we have presented a novel adaptive resolution approach to representing 2-d shapes. The represen-
tation is invariant to scale, translation and rotation. With the proposed representation, we can
index the shapes using a multidimensional index structure and can thus support efficient similarity
retrieval. Our experiments show that, for the same query cost, the adaptive technique provides
significantly better quality answers compared to the fixed resolution representation and is hence a
better approach to shape retrieval.

A.5 Feature Sequence Normalization

Depending on the extracted feature, some normalization may be needed. The normalization process
serves two purposes:

1. It puts an equal emphasis on each feature element within a feature vector. To see the impor-
tance of this, notice that in the texture representation, the feature elements may be different
physical quantities. Their magnitudes can vary drastically, thereby biasing the Euclidean
distance measure. This is overcome by the process of intra-feature normalization.

2. It maps the distance values of the query from each atomic feature into the range [0,1] so
that they can be interpreted as the degree of membership in the fuzzy model or relevance
probability in the probability model. While some similarity functions naturally return a value
in the range of [0, 1], e.g. the color histogram intersection; others do not, e.g. the Euclidean
distance used in texture. In the latter case the distances need to be converted to the range
of [0, 1] before they can be used. This is referred to as inter-feature normalization.

2We have performed experiments using a multidimensional index structure and measured the actual I/O and CPU
cost for the two techniques. Our experiments validate the claim that the query cost is indeed proportional (actually
super-linearly) to the number of dimensions used.
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A.5.1 Intra-feature Normalization

This normalization process is only needed for features using a vector based representation, as in the
case of the wavelet texture feature representation.

For the vector based feature representation, let F = [f1, f2, ..., fj , ..., fN ] be the feature vector,
where N is the number of feature elements in the feature vector and I1, I2, . . . , IM be the images.
For image Ii, we refer to the corresponding feature F as Fi = [fi,1, fi,2, ..., fi,j , ..., fi,N ]. Since there
are M images in the database, we can form a M × N feature matrix F = fi,j , where fi,j is the
jth feature element in feature vector Fi. Each column of F is a length-M sequence of the jth
feature element, represented as Fj . The goal is to normalize the entries in each column to the same
range so as to ensure that each individual feature element receives equal weight in determining the
Euclidean distance between the two vectors.

Assuming the feature sequence Fj to be a Gaussian sequence, we compute the mean mj and
standard deviation σj of the sequence. We then normalize the original sequence to a N(0,1) sequence
as follows:

f ′i,j =
fi,j −mj

σj
(A.7)

Note that after the Gaussian normalization, the probability of a feature element value being in the
range of [-1, 1] is 68%. If we use 3σj in the denominator, the probability of a feature element value
being in the range of [-1, 1] is approximately 99%. In practice, we can consider all of the feature
element values within the range of [-1,1] by mapping the out-of-range values to either -1 or 1.

A.5.2 Inter-feature Normalization

Intra-feature normalization ensures that equal emphasis is put on each feature element within a
feature vector. On the other hand, inter-feature normalization ensures equal emphasis of each
feature within a composite query. The aim is to convert similarity values (or distance in some cases
like wavelet) into the range [0,1].

The feature representations used in MARS are of various forms, such as vector based (wavelet
texture representation), histogram based (histogram color representation), irregular (MFD shape
representation), etc. The distance computations of some of these features (e.g. color histogram)
naturally yield a similarity value between 0 and 1 and hence do not need additional normalization.
Distance calculations in other features are normalized to produce values in the range [0,1] with the
process described below.

1. For any pair of images Ii and Ij , compute the distance D(i,j) between them:

D(i,j) = dist(FIi , FIj ) (A.8)
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i, j = 1, ..., M,

i 6= j

where FIi and FIj are the feature representations of images Ii and Ij .

2. For the CM
2 = M×(M−1)

2 possible distance values between any pair of images, treat them as a
value sequence and find the mean m and standard deviation σ of the sequence. Store m and
σ in the database to be used in later normalization.

3. After a query Q is presented, compute the raw (un-normalized) distance value between Q

and the images in the database. Let s1, ..., sM denote the raw distance values.

4. Normalize the raw distance values as follows:

s′i =
si −m

3σ
(A.9)

As explained in the intra-feature normalization section, this Gaussian normalization will
ensure 99% of s′i to be within the range of [-1,1]. An additional shift will guarantee that 99%
of distance values are within [0,1]:

s′′i =
s′i + 1

2
(A.10)

After this shift, in practice, we can consider all the values within the range of [0,1], since an
image whose distance from the query is greater than 1 is very dissimilar and can be considered
to be at a distance of 1 without affecting retrieval.

5. Convert from distance values into similarity values. This can be accomplished by the following
operation:

similarityi = 1− s′′i (A.11)

At the end of this normalization, all similarity values for all features have been normalized to
the same range [0,1] with the following interpretation: 1 means full similarity (exact match) and 0
denotes maximum dis-similarity.
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Appendix B

Modified Normalized Recall Metric

In our model, the result of a query at each step of the feedback process is a ranked list of tuples
based on a similarity value that indicates how good each tuple matches the query. The metric used
is designed to compare such ranked lists returned at different iterations of the feedback process.

To measure the effectiveness of the query refinement process, we run an initial query with tuples
chosen at random from the collection of possible tuples for a query (named a collection) and save
the ranked result as the ground truth as if it were a desired result a user would expect. This is the
Relevant list RL1. This process avoids the user’s subjectivity and the effect of how well features
capture tuple contents in the evaluation of the feedback process. The query results are recorded
in the Retrieved list RL2. The two lists are compared and the similarity between the two lists
indicates how good the retrieval process is.

The system then performs refinement iteratively and at each iteration computes a new RL2

query result ranked list. The modified recall values are computed based on the formula in (B.1) to
compare the results from various iterations. The modified recall is defined as follows:

Recallmodified(RL1, RL2) = 1−
4

∑

i∈RL1

[rank(RL2, i)− rank(RL1, i)]×
[
1− rank(RL1, i)

|RL1|+ 1

]

(2N̂ − |RL1|+ 1)× |RL1|
(B.1)

The concept behind this modified recall measure is motivated by the pitfall of the normalized
recall measure in (B.2) which was described in [137] as a metric to compare two ranked lists where
rank(List, i) is the rank of item i in List.

Recallnormalized(RL1, RL2) = 1−

∑

i∈RL1

[rank(RL2, i)− rank(RL1, i)]

(N − |RL1|)× |RL1| (B.2)

The normalized recall metric is designed to compare two ranked lists, one of relevant items (the
ground truth) and one of retrieved items (the result of a query). It computes the rank difference
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of the two lists and normalizes the result by the highest possible rank difference, thus producing a
value in the range 0 (worst) to 1 (best). The metric is sensitive to the position of objects in the
ranked list. This sensitivity to rank position is suitable for measuring the effectiveness of the query
refinement process by comparing the relevant list to the result across feedback iterations. As the
lists converge, the metric results in a better value.

The normalized recall metric is however meant to compare a list of relevant items to the fully
ranked list of answers of the whole collection. The problems with the normalized recall metric are:

1. A few poorly ranked, but relevant, items have a great impact on the metric because a poorly
ranked item introduces a large value of rank difference. In practice, the user views only the
top N̂ answers with N̂ ¿ N . The impact of rank differences beyond N̂ is not noticeable by
the user since he/she does not explore items beyond N̂ .

2. The collection size also has a great impact on the metric. In a large collection, only a small
part of it is actually explored by the user at each instance in time. The rest of the collection
is of no use. Therefore, using the whole collection as an important part of the denominator in
the equation obscures the difference of two good retrieved lists because the large denominator
dilutes the rank difference significantly.

3. Each ranked item is equally important. That is, the best relevant item is as important as the
worst relevant, but still relevant, item.

For these reasons, the normalized recall metric is modified in two ways.

• To deal with the first two problems, the retrieved set is limited to N̂ elements instead of the
whole collection N . Items that are not found in the retrieved set are considered to have a
rank of N̂ +1: just as if they were the next item to be retrieved. In this way, a large collection
does not impact negatively on the metric and the rank difference of each item is limited to
the number of items that the user views/retrieves.

• To address the third problem, a weight is introduced so that rank differences of answers
ranked high in the relevant set have a higher impact than lower ranked answers. A linear
function is used to assign the highest weight to the rank difference of the most relevant item
and the lowest weight to the rank difference of the least relevant item.

There are two ranked lists: RL1 containing the desired ranking of the relevant objects and RL2

containing the ranked result of a query. The modified metric in (B.1) is used. The derivation of
(B.1) is from the original normalized recall which is defined as:

Recallnormalized(RL1, RL2) = 1−

∑

i∈RL1

[rank(RL2, i)− rank(RL1, i)]

(N − |RL1|)× |RL1| (B.3)
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where the denominator is the maximum possible rank difference (RDmax) between the two ranked
lists (that is, relevant list RL1 and the retrieved list RL2) being compared. The modified normalized
recall used as a metric to compare two ranked lists makes two changes to the original normalized
recall metric as discussed earlier. First, unlike normalized recall, since we do not generate a ranking
for the whole collection, but rather only of the best N̂ answers, if a relevant object does not appear
in the retrieved set, its ranking is considered to be N̂ + 1. This modifies the maximum possible
rank difference between two lists as follows:

RDmax = N̂ + (N̂ − 1) + ... + (N̂ − |RL1|+ 1)

=
1
2
× (2N̂ − |RL1|+ 1)× |RL1|

(B.4)

Next, in our metric we re-weigh the importance of rank by giving a high weight to a highly
relevant item and a low weight to a lowly relevant item. For this purpose, a linear weight assignment
function is used. The weight assignment function assigns a weight of 1 to the lowest relevant rank
and weight of |RL1| to the highest relevant rank and is as follows:

w(i) = |RL1| − rank(RL1, i) + 1 (B.5)

In order to keep the average of all the weights to 1 (so as to preserve the property of the original
unweighted rank which can be viewed as assigning a weight of 1 to each rank), the weight is further
normalized as follows:

w(i) = 2×
(

1− rank(RL1, i)
|RL1|+ 1

)
(B.6)

We multiply the weight from Equation (B.6) with the rank difference in the original normalized
recall and replace RDmax in (B.4). The modified normalized recall therefore becomes:

Recallmodified = 1−
4

∑

i∈RL1

[rank(RL2, i)− rank(RL1, i)]×
[
1− rank(RL1, i)

|RL1|+ 1

]

(2N̂ − |RL1|+ 1)× |RL1|
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[126] András Prékopa, Béla Vizvári, Gábor Regős, and Linchun Gao. Bounding the probability of
the union of events by the use of aggregation and disaggregation in linear programs. Technical
Report RRR4-2001, Rutgers Center for Operations Research (Rutcor), Rutgers University,
Jan. 2001.

[127] F. Rabitti and P. Stanchev. GRIM DBMS: A GRaphical IMage Database Management
System. In Visual Database Systems, IFIP TC2/WG2.6 Working Conference on Visual
Database Systems, pages 415–430, 1989.

[128] K. V. S. N. Raju and A. K. Majumdar. Fuzzy functional dependencies and lossless join
decomposition of fuzzy relational database systems. ACM Transactions on Database Systems,
13(2), 1988.

[129] J. T. Robinson. The k-d-b-tree: A search structure for large multidimensional dynamic
indexes. In Proc. ACM SIGMOD, 1981.

[130] J.J. Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor, The
SMART Retrieval System, pages 313–323. Prentice–Hall, Englewood NJ, 1971.

[131] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. Proceedings of SIG-
MOD, 1995.

[132] Y. Rui, T. Huang, and S. Mehrotra. Relevance feedback techniques in interactive content-
based image retrieval. Proc. of IS&T and SPIE Storage and Retrieval of Image and Video
Databases, 1998.

[133] Yong Rui, Thomas S. Huang, Sharad Mehrotra, and Michael Ortega. Automatic matching
tool selection using relevance feedback in MARS. In Proc. of 2nd Int. Conf. on Visual
Information Systems, 1997.

[134] Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra. Relevance feedback: A
power tool for interactive content-based image retrieval. IEEE Trans. Circuits and Systems
for Video Technology, 8(5):644–655, September 1998.

165



[135] Yong Rui, Alfred C. She, and Thomas S. Huang. Modified Fourier Descriptors for Shape
Representation – A Practical Approach. In Proceeding of First International Workshop on
Image Databases and Multi Media Search, 1996. Amsterdam, The Netherlands.

[136] G. Salton, Edward Fox, and E. Voorhees. Extended Boolean Information Retrieval. Commu-
nications of the ACM, 26(11):1022–1036, November 1983.

[137] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw Hill
Computer Science Series, 1983.

[138] T. Seidl and H. Kriegel. Efficient user-adaptable similarity search in large multimedia
databases. In Very Large Databases (VLDB), 1997.

[139] T. Seidl and H. Kriegel. Optimal multistep k-nearest neighbor search. Proc. of ACM SIG-
MOD, 1998.

[140] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price. Access path selection in a relational database management system. In
Philip A. Bernstein, editor, Proc. 1979 ACM SIGMOD Int. Conf. on Management of Data,
pages 23–34, Boston, MA, USA, May 30 - June 1 1979. ACM.

[141] Timos Sellis, N. Roussopoulos, and Christos Faloutsos. The R+-tree: A dynamic index for
multi-dimensional objects. In Proc. VLDB, 1987.

[142] John C. Shafer and Rakesh Agrawal. Parallel algorithms for high-dimensional proximity joins
for data mining applications. In Proc. 23rd Int. Conf. on Very Large Data Bases VLDB ’97,
pages 176–185, 1997.

[143] John C. Shafer and Rakesh Agrawal. Continuous querying in database-centric web applica-
tions. In WWW9 conference, Amsterdan, Netherlands, May 2000.

[144] W. M. Shaw. Term-relevance computations and perfect retrieval performance. Information
Processing and Management.

[145] Chris Sherman and Gary Price. The Invisible Web. Cyber Ago Books, 2001.

[146] Kyuseok Shim, Ramakrishnan Srikant, and Rakesh Agrawal. High-dimensional similarity
joins. In Proc. 13th Int. Conf. on Data Engineering, pages 301–311, 1997.

[147] John R. Smith and Shih-Fu Chang. Querying by color regions using the visualseek content-
based visual query system. Technical report, Columbia Univ.

[148] John R. Smith and Shih-Fu Chang. Transform Features for Texture Classification and Dis-
crimination in Large Image Databases. In Proc. IEEE Int. Conf. on Image Proc., 1994.

166



[149] John R. Smith and Shih-Fu Chang. Single Color Extraction and Image Query. In Proc. IEEE
Int. Conf. on Image Proc., 1995.

[150] John R. Smith and Shih-Fu Chang. Tools and techniques for color image retrieval. In IS &
T/SPIE proceedings Vol.2670, Storage & Retrieval for Image and Video Databases IV, 1995.

[151] John R. Smith and Shih-Fu Chang. Automated Binary Texture Feature Sets for Image
Retrieval. In Proc ICASSP-96, Atlanta, GA, 1996.

[152] T. G. Aguierre Smith. Parsing movies in context. In Summer Usenix Conference, Nashville,
Tennessee, pages 157–167, 1991.

[153] Gabriele Sonnenberger. Exploiting the functionality of object-oriented database management
systems for information retrieval. Bulletin of IEEE Computer Society Technical Committee
on Data Engineering, 1996.

[154] Amanda Spink and Tefko Saracevic. Human—computer interaction in information retrieval:
nature and manifestations of feedback. Interacting with Computers, 10(3):249–267, 1998.

[155] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database Management
System. Communications of the ACM, 34(10):78–92, 1991.

[156] Michael Stonebreaker and Dorothy Moore. Object-Relational DBMSs, The Next Great Wave.
Morgan Kaufman, 1996.

[157] Markus Stricker and Markus Orengo. Similarity of Color Images. In Proc. SPIE Conf. on
Vis. Commun. and Image Proc., 1995.

[158] Michael Swain and Dana Ballard. Color Indexing. International Journal of Computer Vision,
7(1), 1991.

[159] Sybase. Sybase Adaptive Server Enterprise, Version 12.0. Sybase, 1999.

[160] Hideyuki Tamura et al. Texture Features Corresponding to Visual Perception. IEEE Trans.
Systems, Man, and Cybernetics, SMC-8(6), June 1978.

[161] Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. Texture Features Corresponding to
Visual Perception. IEEE Trans. on Sys, Man, and Cyb, SMC-8(6), 1978.

[162] K. S. Thyagarajan, Tom Nguyen, and Charles Persons. A Maximum Likelihood approach to
Texture Classification Using Wavelet Transform. In Proc. IEEE Int. Conf. on Image Proc.,
1994.

[163] TPC. Transaction processing performance council (tpc). http://www.tpc.org.

[164] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information
Processing Letters, 1991.

167



[165] Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems. Prentice Hall,
1997.

[166] S. R. Vasanthakumar, James P. Callan, and Bruce W. Croft. Integrating inquery with an
rdbms to support text retrieval. Bulletin of IEEE Computer Society Technical Committee on
Data Engineering, 1996.

[167] D. White and R. Jain. Similarity indexing with the ss-tree. Proc. of ICDE, 1995.

[168] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compression and
Indexing Documents and Images. Morgan Kaufmann Publishers, May 1999.

[169] L. Wu, C. Faloutsos, K. Sycara, and T. Payne. FALCON: Feedback adaptive loop for content-
based retrieval. Proceedings of VLDB Conference, 2000.

[170] Lofti A. Zadeh. Fuzzy logic. IEEE Computer, 21(4):83–93, 1988.

[171] Lofti A. Zadeh. Knowledge representation in fuzzy logic. IEEE Trans. Knowledge and Data
Engineering, 1(1):89–100, 1989.

[172] Carlo Zaniolo, Stefano Ceri, Christos Faoutsos, Richard T. Snordgrass, V.S. Subrahmanian,
and Roberto Zicardi. Advanced Database Systems. Morgan Kaufman, 1997.

168



Vita

Michael Ortega Binderberger received his B.Eng. degree in Computer Engineering from the Insti-
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